Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891084

ABSTRACT

Mutations in p53 and KRAS are seen in most cases of colon cancer. The impact of these mutations on signaling pathways related to cancer growth has been studied in depth, but relatively less is known on their effects on amino acid transporters in cancer cells. This represents a significant knowledge gap because amino acid nutrition in cancer cells profoundly influences macropinocytosis and ferroptosis, two processes with opposing effects on tumor growth. Here, we used isogenic colon cancer cell lines to investigate the effects of p53 deletion and KRAS activation on two amino acid transporters relevant to macropinocytosis (SLC38A5) and ferroptosis (SLC7A11). Our studies show that the predominant effect of p53 deletion is to induce SLC7A11 with the resultant potentiation of antioxidant machinery and protection of cancer cells from ferroptosis, whereas KRAS activation induces not only SLC7A11 but also SLC38A5, thus offering protection from ferroptosis as well as improving amino acid nutrition in cancer cells via accelerated macropinocytosis. Niclosamide, an FDA-approved anti-helminthic, blocks the functions of SLC7A11 and SLC38A5, thus inducing ferroptosis and suppressing macropinocytosis, with the resultant effective reversal of tumor-promoting actions of oncogenic changes in p53 and KRAS. These findings underscore the potential of this drug in colon cancer treatment.


Subject(s)
Colonic Neoplasms , Ferroptosis , Niclosamide , Pinocytosis , Proto-Oncogene Proteins p21(ras) , Tumor Suppressor Protein p53 , Humans , Ferroptosis/drug effects , Ferroptosis/genetics , Pinocytosis/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor , Niclosamide/pharmacology , Niclosamide/therapeutic use , Antineoplastic Agents/pharmacology , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Mutation/genetics
2.
Antioxidants (Basel) ; 13(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38539825

ABSTRACT

The amino acid transporters SLC38A5 and SLC7A11 are upregulated in triple-negative breast cancer (TNBC). SLC38A5 transports glutamine, methionine, glycine and serine, and therefore activates mTOR signaling and induces epigenetic modifications. SLC7A11 transports cystine and increases the cellular levels of glutathione, which protects against oxidative stress and lipid peroxidation via glutathione peroxidase, a seleno (Se)-enzyme. The primary source of Se is dietary Se-methionine (Se-Met). Since SLC38A5 transports methionine, we examined its role in Se-Met uptake in TNBC cells. We found that SLC38A5 interacts with methionine and Se-Met with comparable affinity. We also examined the influence of Se-Met on Nrf2 in TNBC cells. Se-Met activated Nrf2 and induced the expression of Nrf2-target genes, including SLC7A11. Our previous work discovered niclosamide, an antiparasitic drug, as a potent inhibitor of SLC38A5. Here, we found SLC7A11 to be inhibited by niclosamide with an IC50 value in the range of 0.1-0.2 µM. In addition to the direct inhibition of SLC38A5 and SLC7A11, the pretreatment of TNBC cells with niclosamide reduced the expression of both transporters. Niclosamide decreased the glutathione levels, inhibited proliferation, suppressed GPX4 expression, increased lipid peroxidation, and induced ferroptosis in TNBC cells. It also significantly reduced the growth of the TNBC cell line MB231 in mouse xenografts.

3.
Biochem J ; 481(4): 295-312, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38372391

ABSTRACT

Ketogenesis is considered to occur primarily in liver to generate ketones as an alternative energy source for non-hepatic tissues when glucose availability/utilization is impaired. 3-Hydroxy-3-methylglutaryl-CoA synthase-2 (HMGCS2) mediates the rate-limiting step in this mitochondrial pathway. Publicly available databases show marked down-regulation of HMGCS2 in colonic tissues in Crohn's disease and ulcerative colitis. This led us to investigate the expression and function of this pathway in colon and its relevance to colonic inflammation in mice. Hmgcs2 is expressed in cecum and colon. As global deletion of Hmgcs2 showed significant postnatal mortality, we used a conditional knockout mouse with enzyme deletion restricted to intestinal tract. These mice had no postnatal mortality. Fasting blood ketones were lower in these mice, indicating contribution of colonic ketogenesis to circulating ketones. There was also evidence of gut barrier breakdown and increased susceptibility to experimental colitis with associated elevated levels of IL-6, IL-1ß, and TNF-α in circulation. Interestingly, many of these phenomena were mostly evident in male mice. Hmgcs2 expression in colon is controlled by colonic microbiota as evidenced from decreased expression in germ-free mice and antibiotic-treated conventional mice and from increased expression in a human colonic epithelial cell line upon treatment with aqueous extracts of cecal contents. Transcriptomic analysis of colonic epithelia from control mice and Hmgcs2-null mice indicated an essential role for colonic ketogenesis in the maintenance of optimal mitochondrial function, cholesterol homeostasis, and cell-cell tight-junction organization. These findings demonstrate a sex-dependent obligatory role for ketogenesis in protection against colonic inflammation in mice.


Subject(s)
Colitis , Ketones , Humans , Mice , Male , Animals , Ketone Bodies , Colitis/genetics , Colitis/prevention & control , Colon , Inflammation , Mice, Inbred C57BL , Dextran Sulfate
4.
Heart Fail Rev ; 22(6): 665-683, 2017 11.
Article in English | MEDLINE | ID: mdl-28639006

ABSTRACT

In the recent past, substantial advances have been made in the treatment of myocardial infarction (MI). Despite the impact of these positive developments, MI remains to be a leading cause of morbidity as well as mortality. An interesting hypothesis is that the development of new blood vessels (angiogenesis) or the remodeling of preexisting collaterals may form natural bypasses that could compensate for the occlusion of an epicardial coronary artery. A number of angiogenic factors are proven to be elicited during MI. Exogenous supplementation of these growth factors either in the form of recombinant protein or gene would enhance the collateral vessel formation and thereby improve the outcome after MI. The aim of this review is to describe the nature and potentials of different angiogenic factors, their expression, their efficacy in animal studies, and clinical trials pertaining to MI.


Subject(s)
Intercellular Signaling Peptides and Proteins/therapeutic use , Myocardial Infarction , Ventricular Function, Left/physiology , Animals , Humans , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Ventricular Function, Left/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...