Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1193380, 2023.
Article in English | MEDLINE | ID: mdl-37700866

ABSTRACT

Mycobacterium abscessus subsp. abscessus is a rapidly growing facultative intracellular pathogen that usually infects human lung and skin epithelium. Recently, we and another group have shown that it also has the potential to colonize human gastric epithelium, but its significance with respect to gastric diseases remains unclear. Although Helicobacter pylori still remains the only definite gastric pathogen, recent studies have shown that M. abscessus subsp. abscessus also has the potential to colonize human gastric epithelium. M. abscessus subsp. abscessus is known to exhibit multidrug resistance and clarithromycin has been used as the drug of choice. We aimed to determine the clarithromycin resistance profile of 117 (74 rough and 43 smooth) gastric M. abscessus subsp. abscessus strains and to detect the point mutations in rrl and erm (41) genes conferring the resistance. Our data showed 79.48% (19 smooth and 74 rough) of M. abscessus subsp. abscessus strains were resistant to clarithromycin (MIC90 ≤ 512 µg/mL), while 20.51% (24 smooth) were susceptible (MIC90 ≤ 8 µg/mL). Nucleotide sequence analysis of the rrl gene with reference strains of M. abscessus subsp. abscessus did not show any mutation that is relevant to the clarithromycin resistance. However, analysis of erm (41) gene showed that M. abscessus subsp. abscessus strains, which were susceptible to clarithromycin had C, C, G, and C at their nucleotide positions 28, 159, 238, and 330, respectively, while the resistant strains showed T, T, A, and A at the same positions. Based on antibiogram and sequence analysis data we recommend further studies involving genomic analysis to identify the other genes involved in high clarithromycin resistance in gastric M. abscessus subsp. abscessus along with the mechanisms involved.

2.
Front Microbiol ; 12: 713955, 2021.
Article in English | MEDLINE | ID: mdl-34484153

ABSTRACT

Pathogenic potentials of the gastric pathogen, Helicobacter pylori, have been proposed, evaluated, and confirmed by many laboratories for nearly 4 decades since its serendipitous discovery in 1983 by Barry James Marshall and John Robin Warren. Helicobacter pylori is the first bacterium to be categorized as a definite carcinogen by the International Agency for Research on Cancer (IARC) of the World Health Organization (WHO). Half of the world's population carries H. pylori, which may be responsible for severe gastric diseases like peptic ulcer and gastric cancer. These two gastric diseases take more than a million lives every year. However, the role of H. pylori as sole pathogen in gastric diseases is heavily debated and remained controversial. It is still not convincingly understood, why most (80-90%) H. pylori infected individuals remain asymptomatic, while some (10-20%) develop such severe gastric diseases. Moreover, several reports indicated that colonization of H. pylori has positive and negative associations with several other gastrointestinal (GI) and non-GI diseases. In this review, we have discussed the state of the art knowledge on "H. pylori factors" and several "other factors," which have been claimed to have links with severe gastric and duodenal diseases. We conclude that H. pylori infection alone does not satisfy the "necessary and sufficient" condition for developing aggressive clinical outcomes. Rather, the cumulative effect of a number of factors like the virulence proteins of H. pylori, local geography and climate, genetic background and immunity of the host, gastric and intestinal microbiota, and dietary habit and history of medicine usage together determine whether the H. pylori infected person will remain asymptomatic or will develop one of the severe gastric diseases.

3.
Front Microbiol ; 12: 631140, 2021.
Article in English | MEDLINE | ID: mdl-33717022

ABSTRACT

Helicobacter pylori infection in stomach leads to gastric cancer, gastric ulcer, and duodenal ulcer. More than 1 million people die each year due to these diseases, but why most H. pylori-infected individuals remain asymptomatic while a certain proportion develops such severe gastric diseases remained an enigma. Several studies indicated that gastric and intestinal microbiota may play a critical role in the development of the H. pylori-associated diseases. However, no specific microbe in the gastric or intestinal microbiota has been clearly linked to H. pylori infection and related gastric diseases. Here, we studied H. pylori infection, its virulence genes, the intestinal microbiota, and the clinical status of Trivandrum residents (N = 375) in southwestern India by standard H. pylori culture, PCR genotype, Sanger sequencing, and microbiome analyses using Illumina Miseq and Nanopore GridION. Our analyses revealed that gastric colonization by virulent H. pylori strains (vacAs1i1m1cagA+) is necessary but not sufficient for developing these diseases. Conversely, distinct microbial pools exist in the lower gut of the H. pylori-infected vs. H. pylori-non-infected individuals. Bifidobacterium (belonging to the phylum Actinobacteria) and Bacteroides (belonging to the phylum Bacteroidetes) were present in lower relative abundance for the H. pylori+ group than the H. pylori- group (p < 0.05). On the contrary, for the H. pylori+ group, genus Dialister (bacteria belonging to the phylum Firmicutes) and genus Prevotella (bacteria belonging to the phylum Bacteroidetes) were present in higher abundance compared to the H. pylori- group (p < 0.05). Notably, those who carried H. pylori in the stomach and had developed aggressive gastric diseases also had extremely low relative abundance (p < 0.05) of several Bifidobacterium species (e.g., B. adolescentis, B. longum) in the lower gut suggesting a protective role of Bifidobacterium. Our results show the link between lower gastrointestinal microbes and upper gastrointestinal diseases. Moreover, the results are important for developing effective probiotic and early prognosis of severe gastric diseases.

4.
PLoS Negl Trop Dis ; 13(11): e0007799, 2019 11.
Article in English | MEDLINE | ID: mdl-31682611

ABSTRACT

Development of gastric diseases such as gastritis, peptic ulcer and gastric cancer is often associated with several biotic and abiotic factors. Helicobacter pylori infection is such a well-known biotic factor. However, not all H. pylori-infected individuals develop gastric diseases and not all individuals with gastric diseases are infected with H. pylori. Therefore, it is possible that other gastric bacteria may contribute to the formation and progression of gastric disease. The aim of this study was to isolate prevalent gastric bacteria under microaerobic condition and identify them by 16S rRNA gene sequence analysis. Analysis of gastric biopsies showed infection of Mycobacterium abscessus (phylum Actinobacteria) to be highly prevalent in the stomachs of subjects included. Our data show that of 129 (67 male and 62 female) patients with gastric symptoms, 96 (51 male and 45 female) showed the presence of M. abscessus in stomach tissues. Infection of M. abscessus in gastric epithelium was further confirmed by imaging with acid fast staining, immunohistochemistry and immunofluorescence. Our imaging data strongly suggested that M. abscessus is an intracellular colonizer residing inside the gastric epithelial cells rather than in macrophages. Additionally, phylogenetic analysis of the mycobacterial hsp65 gene showed that the nearest match to the M. abscessus strains isolated from our study subjects is the M. abscessus strain ATCC 19977. Surprisingly, the subjects studied, the prevalence of M. abscessus infection in stomach is even higher than the prevalence of H. pylori infection. This, to the best of our knowledge, is the first study showing the colonization of M. abscessus in human gastric mucosa among patients with various gastric symptoms. This study could provide usher in a new opportunity to understand the role of less studied gastric bacteria in the development of gastric diseases.


Subject(s)
Helicobacter Infections/complications , Helicobacter Infections/epidemiology , Mycobacterium Infections, Nontuberculous/complications , Mycobacterium Infections, Nontuberculous/epidemiology , Stomach/microbiology , Adolescent , Adult , Aged , Bacterial Proteins/classification , Bacterial Proteins/genetics , Biopsy , Chaperonin 60/classification , Chaperonin 60/genetics , Child , Coinfection , Epithelial Cells , Female , Gastric Mucosa/microbiology , Genes, Bacterial/genetics , Helicobacter pylori/genetics , Humans , Male , Middle Aged , Mycobacterium abscessus/genetics , Mycobacterium abscessus/isolation & purification , Phylogeny , Prevalence , RNA, Ribosomal, 16S/genetics , Stomach/pathology , Young Adult
5.
Sci Rep ; 9(1): 14690, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31604969

ABSTRACT

Influenza A (H1N1) continues to be a major public health threat due to possible emergence of a more virulent H1N1 strain resulting from dynamic changes in virus adaptability consequent to functional mutations and antigenic drift in the hemagglutinin (HA) and neuraminidase (NA) surface proteins. In this study, we describe the genetic and evolutionary characteristics of H1N1 strains that circulated in India over a period of nine years from 2009 to 2017 in relation to global strains. The finding is important from a global perspective since previous phylogenetic studies have suggested that the tropics contributed substantially to the global circulation of influenza viruses. Bayesian phylogenic analysis of HA sequences along with global strains indicated that there is a temporal pattern of H1N1 evolution and clustering of Indian isolates with globally circulating strains. Interestingly, we observed four new amino acid substitutions (S179N, I233T, S181T and I312V) in the HA sequence of H1N1 strains isolated during 2017 and two (S181T and I312V) were found to be unique in Indian isolates. Structurally these two unique mutations could lead to altered glycan specificity of the HA gene. Similarly, sequence and structural analysis of NA domain revealed that the presence of K432E mutation in H1N1 strains isolated after 2015 from India and in global strains found to induce a major loop shift in the vicinity of the catalytic site. The findings presented here offer an insight as to how these acquired mutations could be associated to an improved adaptability of the virus for efficient human transmissibility.


Subject(s)
Disease Outbreaks , Evolution, Molecular , Influenza A Virus, H1N1 Subtype/chemistry , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/epidemiology , Adolescent , Adult , Amino Acid Substitution , Bayes Theorem , Child , Child, Preschool , Female , Genetic Drift , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , India/epidemiology , Infant , Influenza, Human/virology , Male , Middle Aged , Mutation , Neuraminidase/genetics , Phylogeny , Real-Time Polymerase Chain Reaction , Young Adult
6.
Genome Announc ; 5(28)2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28705972

ABSTRACT

We report here the whole-genome sequence of six clinical isolates of influenza A(H1N1)pdm09, isolated from Kerala, India. Amino acid analysis of all gene segments from the A(H1N1)pdm09 isolates obtained in 2014 and 2015 identified several new mutations compared to the 2009 A(H1N1) pandemic strain.

SELECTION OF CITATIONS
SEARCH DETAIL
...