Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Temperature (Austin) ; 9(4): 357-372, 2022.
Article in English | MEDLINE | ID: mdl-36339092

ABSTRACT

This study investigated the effect of heat stress on locomotor activity within international field hockey at team, positional and playing-quarter levels. Analysis was conducted on 71 matches played by the Malaysia national men's team against 24 opponents. Fixtures were assigned to match conditions, based on air temperature [COOL (14 ± 3°C), WARM (24 ± 1°C), HOT (27 ± 1°C), or VHOT (32 ± 2°C), p < 0.001]. Relationships between locomotor metrics and air temperature (AIR), absolute and relative humidity, and wet bulb globe temperature (WBGT) were investigated further using correlation and regression analyses. Increased AIR and WBGT revealed similar correlations (p < 0.01) with intensity metrics; high-speed running (AIR r = -0.51, WBGT r = -0.45), average speed (AIR r = -0.48, WBGT r = -0.46), decelerations (AIR r = -0.41, WBGT r = -0.41), sprinting efforts (AIR r = -0.40, WBGT r = -0.36), and sprinting distance (AIR r = -0.37, WBGT r = -0.29). In comparison to COOL, HOT, and VHOT matches demonstrated reduced high-speed running intensity (-14-17%; p < 0.001), average speed (-5-6%; p < 0.001), sprinting efforts (-17%; p = 0.010) and decelerations per min (-12%; p = 0.008). Interactions were found between match conditions and playing quarter for average speed (+4-7%; p = 0.002) and sprinting distance (+16-36%; p < 0.001), both of which were higher in the fourth quarter in COOL versus WARM, HOT and VHOT. There was an interaction for "low-speed" (p < 0.001), but not for "high-speed" running (p = 0.076) demonstrating the modulating effect of air temperature (particularly >25°C) on pacing within international hockey. These are the first data demonstrating the effect of air temperature on locomotor activity within international men's hockey, notably that increased air temperature impairs high-intensity activities by 5-15%. Higher air temperatures compromise high-speed running distances between matches in hockey.

2.
Front Sports Act Living ; 3: 653364, 2021.
Article in English | MEDLINE | ID: mdl-34127962

ABSTRACT

The locomotor demands of international men's field hockey matches were investigated across positions (DEF, MID, FWD) and playing quarters. Volume (i.e., total values) and intensity (i.e., relative to playing time) data were collected using 10-Hz GPS/100-Hz accelerometer units from the #11 world-ranked (WR) team, during 71 matches, against 24 opponents [WR 12 ± 11 (range, 1-60)]. Mean ± SD team total distance (TD) was 4,861 ± 871 m, with 25% (1,193 ± 329 m) "high-speed running" (>14.5 km h-1) and 8% (402 ± 144 m) "sprinting" (>19.0 km h-1). Reduced TD (range, -3 to 4%) and average speed (range, -3.4 to 4.7%) occurred through subsequent quarters, vs. Q1 (p < 0.05). A "large" negative relationship (r = -0.64) was found between playing duration and average speed. Positional differences (p < 0.05) were identified for all volume metrics including; playing duration (DEF, 45:50 ± 8:00 min; MID, 37:37 ± 7:12 min; FWD, 33:32 ± 6:22 min), TD (DEF, 5,223 ± 851 m; MID, 4,945 ± 827 m; FWD, 4,453 ± 741 m), sprinting distance (DEF, 315 ± 121 m; MID, 437 ± 144 m; FWD, 445 ± 129 m), and acceleration efforts (>2 m s-2; DEF, 48 ± 12; MID, 51 ± 11; FWD, 50 ± 14). Intensity variables similarly revealed positional differences (p < 0.05) but with a different pattern between positions; average speed (DEF, 115 ± 10 m min-1; MID, 132 ± 10 m min-1; FWD, 134 ± 15 m min-1), sprinting (DEF, 7 ± 3 m min-1; MID, 12 ± 4 m min-1; FWD, 14 ± 4 m min-1), and accelerations (DEF, 1.1 ± 0.3 n min-1; MID, 1.4 ± 0.2 n min-1; FWD, 1.5 ± 0.3 n min-1). Physical outputs reduced across playing quarters, despite unlimited substitutions, demonstrating the importance of optimizing physical preparation prior to international competition. Volume and intensity data highlight specific positional requirements, with forwards displaying shorter playing durations but greater high-intensity activities than defenders.

3.
J Sports Sci Med ; 20(1): 101-109, 2021 03.
Article in English | MEDLINE | ID: mdl-33707993

ABSTRACT

This study investigated the relationships between internal and external training load metrics across a 2-week 'in-season' microcycle in squash. 134 on-court and 32 off-court 'conditioning' sessions were completed by fifteen elite squash players with an average (±SD) of 11 ± 3 per player. During every session, external load was captured using a tri-axial accelerometer to calculate Playerload; i.e., the instantaneous rate of change of acceleration across 3-dimensional planes. Internal load was measured using heart rate (HR), global (sRPE) and differential RPE (dRPE-Legs, dRPE-Breathing). Additionally, HR was used to calculate Banister's, Edward's and TEAM TRIMPs. Across 166 training sessions, Playerload was moderately correlated with TRIMP-Banister (r = 0.43 [95% CI: 0.29-0.55], p < 0.001) and TRIMP-Edwards (r = 0.50 [0.37-0.61], p < 0.001). Association of Playerload with TRIMP-TEAM (r = 0.24 [0.09-0.38], p = 0.001) was small. There was a moderate correlation between sRPE and Playerload (r = 0.46 [0.33-0.57], p < 0.001). Association of sRPE was large with TRIMP-Banister (r = 0.68 [0.59-0.76], p = 0.001), very large with TRIMP-Edwards (r = 0.79 [0.72-0.84], p < 0.001) and moderate with TRIMP-TEAM (r = 0.44 [0.31-0.56], p < 0.001). Both dRPE-Legs (r = 0.95 [0.93-0.96], p < 0.001) and dRPE-Breathing (r = 0.92 [0.89-0.94], p < 0.001) demonstrated nearly perfect correlations with sRPE and with each other (r = 0.91 [0.88-0.93], p < 0.001). Collection of both internal and external training load data is recommended to fully appreciate the physical demands of squash training. During a training microcycle containing a variety of training sessions, interpreting internal or external metrics in isolation may underestimate or overestimate the training stress a player is experiencing.


Subject(s)
Athletes , Heart Rate/physiology , Physical Conditioning, Human/methods , Racquet Sports/physiology , Respiratory Rate/physiology , Acceleration , Accelerometry , Deceleration , Female , Humans , Malaysia , Male , Monitoring, Physiologic/methods , Movement/physiology , Muscle, Skeletal/physiology , Physical Conditioning, Human/physiology , Time Factors , Wearable Electronic Devices , Young Adult
4.
Int J Sports Physiol Perform ; 16(6): 779-786, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33547264

ABSTRACT

PURPOSE: To quantify the demands of specific on- and off-court sessions, using internal and external training load metrics, in elite squash. METHODS: A total of 15 professional squash players (11 males and 4 females) wore a 100-Hz triaxial accelerometer/global positioning system unit and heart rate monitor during on-court "Group," "Feeding," "Ghosting," "Matchplay," and off-court "Conditioning" sessions across a 2-week in-season microcycle. Comparisons of absolute training load (total values) and relative intensity (per minute) were made between sessions for internal (session rating of perceived exertion, differential rating of perceived exertion, TRIMP) and external (Playerload, very high-intensity movements [>3.5 m·s-2]) metrics. RESULTS: The Group sessions were the longest (79 [12] min), followed by Feeding (55 [15] min), Matchplay (46 [17] min), Conditioning (37 [9] min), and Ghosting (35 [6] min). Time >90% maximum heart rate was the lowest during Feeding (vs all others P < .05) but other sessions were not different (all P > .05). Relative Playerload during Conditioning (14.3 [3.3] arbitrary unit [a.u.] per min, all P < .05) was higher than Ghosting (7.5 [1.2] a.u./min) and Matchplay (6.9 [1.5] a.u./min), with no difference between these 2 sessions (P ≥ .999). Conditioning produced the highest Playerloads (519 [153] a.u., all P < .001), with the highest on-court Playerloads from Group (450 [94] a.u., all P < .001). The highest session rating of perceived exertion (all P < .001), Edward's TRIMP (all P < .001), and TEAM-TRIMP (all P < .019) occurred during the Group sessions. CONCLUSIONS: Squash Matchplay does not systematically produce the highest training intensities and loads. Group sessions provide the highest training loads for many internal and external parameters and, therefore, play a central role within the training process. These findings facilitate planning or adjustment of intensity, volume, and frequency of sessions to achieve desirable physical outcomes.


Subject(s)
Physical Conditioning, Human , Racquet Sports , Soccer , Female , Humans , Male , Movement , Physical Exertion , Seasons
5.
J Neurophysiol ; 122(6): 2486-2503, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31577474

ABSTRACT

Overarm throwing is a fundamental human skill. Since paleolithic hunter-gatherer societies, the ability of throwing played a key role in brain and body co-evolution. For decades, throwing skill acquisition has been the subject of developmental and gender studies. However, due to its complex multijoint nature, whole body throwing has found little space in quantitative studies of motor behavior. In this study we examined how overarm throwing varies within and between individuals in a sample of untrained adults. To quantitatively compare whole body kinematics across throwing actions, we introduced a new combination of spatiotemporal principal component, linear discrimination, and clustering analyses. We found that the identity and gender of a thrower can be robustly inferred by the kinematics of a single throw, reflecting the characteristic features in individual throwing strategies and providing a quantitative ground for the well-known differences between males and females in throwing behavior. We also identified four main classes of throwing strategies, stable within individuals and resembling the main stages of throwing proficiency acquisition during motor development. These results support earlier proposals linking interindividual and gender differences in throwing, with skill acquisition interrupted at different stages of the typical developmental trajectory of throwing motor behavior.NEW & NOTEWORTHY Unconstrained throwing, because of its complexity, received little attention in quantitative motor control studies. By introducing a new approach to analyze whole body kinematics, we quantitatively characterized gender effects, interindividual differences, and common patterns in nontrained throwers. The four throwing styles identified across individuals resemble different stages in the acquisition of throwing skills during development. These results advance our understanding of complex motor skills, bridging the gap between motor control, motor development, and sport science.


Subject(s)
Human Development/physiology , Learning/physiology , Motor Activity/physiology , Motor Skills/physiology , Adult , Biomechanical Phenomena , Female , Humans , Individuality , Male , Sex Factors , Young Adult
6.
Front Hum Neurosci ; 11: 505, 2017.
Article in English | MEDLINE | ID: mdl-29163094

ABSTRACT

The ability to intercept or avoid a moving object, whether to catch a ball, snatch one's prey, or avoid the path of a predator, is a skill that has been acquired throughout evolution by many species in the animal kingdom. This requires processing early visual cues in order to program anticipatory motor responses tuned to the forthcoming event. Here, we explore the nature of the early kinematics cues that could inform an observer about the future direction of a ball projected with an unconstrained overarm throw. Our goal was to pinpoint the body segments that, throughout the temporal course of the throwing action, could provide key cues for accurately predicting the side of the outgoing ball. We recorded whole-body kinematics from twenty non-expert participants performing unconstrained overarm throws at four different targets placed on a vertical plane at 6 m distance. In order to characterize the spatiotemporal structure of the information embedded in the kinematics of the throwing action about the outgoing ball direction, we introduced a novel combination of dimensionality reduction and machine learning techniques. The recorded kinematics clearly shows that throwing styles differed considerably across individuals, with corresponding inter-individual differences in the spatio-temporal structure of the thrower predictability. We found that for most participants it is possible to predict the region where the ball hit the target plane, with an accuracy above 80%, as early as 400-500 ms before ball release. Interestingly, the body parts that provided the most informative cues about the action outcome varied with the throwing style and during the time course of the throwing action. Not surprisingly, at the very end of the action, the throwing arm is the most informative body segment. However, cues allowing for predictions to be made earlier than 200 ms before release are typically associated to other body parts, such as the lower limbs and the contralateral arm. These findings are discussed in the context of the sport-science literature on throwing and catching interactive tasks, as well as from the wider perspective of the role of sensorimotor coupling in interpersonal social interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...