Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Reprod ; 37(7): 1678-1691, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35552408

ABSTRACT

STUDY QUESTION: Is it possible to develop a comprehensive pipeline for all-in-one preimplantation genetic testing (PGT), also suitable for parents-only haplotyping and, for the first time, third-party reproduction? SUMMARY ANSWER: Optimized reduced representation sequencing (RRS) by GENType, along with a novel analysis platform (Hopla), enables cheap, accurate and comprehensive PGT of blastocysts, even without the inclusion of additional family members or both biological parents for genome-wide embryo haplotyping. WHAT IS KNOWN ALREADY: Several haplotyping strategies have proven to be effective for comprehensive PGT. However, these methods often rely on microarray technology, whole-genome sequencing (WGS) or a combination of strategies, hindering sample throughput and cost-efficiency. Moreover, existing tools (including other RRS-based strategies) require both prospective biological parents for embryo haplotyping, impeding application in a third-party reproduction setting. STUDY DESIGN, SIZE, DURATION: This study included a total of 257 samples. Preliminary technical validation was performed on 81 samples handpicked from commercially available cell lines. Subsequently, a clinical validation was performed on a total of 72 trophectoderm biopsies from 24 blastocysts, tested for a monogenic disorder (PGT-M) (n = 15) and/or (sub)chromosomal aneuploidy (PGT-SR/PGT-A) (n = 9). Once validated, our pipeline was implemented in a diagnostic setting on 104 blastocysts for comprehensive PGT. PARTICIPANTS/MATERIALS, SETTING, METHODS: Samples were whole-genome amplified (WGA) and processed by GENType. Quality metrics, genome-wide haplotypes, b-allele frequencies (BAFs) and copy number profiles were generated by Hopla. PGT-M results were deduced from relative haplotypes, while PGT-SR/PGT-A results were inferred from read-count analysis and BAF profiles. Parents-only haplotyping was assessed by excluding additional family members from analysis and using an independently diagnosed embryo as phasing reference. Suitability for third-party reproduction through single-parent haplotyping was evaluated by excluding one biological parent from analysis. Results were validated against reference PGT methods. MAIN RESULTS AND THE ROLE OF CHANCE: Genome-wide haplotypes of single cells were highly accurate (mean > 99%) compared to bulk DNA. Unbalanced chromosomal abnormalities (>5 Mb) were detected by GENType. For both PGT-M as well as PGT-SR/PGT-A, our technology demonstrated 100% concordance with reference PGT methods for diverse WGA methods. Equally, for parents-only haplotyping and single-parent haplotyping (of autosomal dominant disorders and X-linked disorders), PGT-M results were fully concordant. Furthermore, the origin of trisomies in PGT-M embryos was correctly deciphered by Hopla. LIMITATIONS, REASONS FOR CAUTION: Intrinsic to linkage-analysis strategies, de novo single-nucleotide variants remain elusive. Moreover, parents-only haplotyping is not a stand-alone approach and requires prior diagnosis of at least one reference embryo by an independent technology (i.e. direct mutation analysis) for haplotype phasing. Using a haplotyping approach, the presence of a homologous recombination site across the chromosome is biologically required to distinguish meiotic II errors from mitotic errors during trisomy origin investigation. WIDER IMPLICATIONS OF THE FINDINGS: We offer a generic, fully automatable and accurate pipeline for PGT-M, PGT-A and PGT-SR as well as trisomy origin investigation without the need for personalized assays, microarray technology or WGS. The unique ability to perform single-parent assisted haplotyping of embryos paves the way for cost-effective PGT in a third-party reproduction setting. STUDY FUNDING/COMPETING INTEREST(S): L.D.W. is supported by the Research Foundation Flanders (FWO; 1S74619N). L.R. and B.M. are funded by Ghent University and M.B., S.S., K.T., F.V.M. and A.D. are supported by Ghent University Hospital. Research in the N.C. lab was funded by Ghent University, VIB and Kom op Tegen Kanker. A.D.K and N.C. are co-inventors of patent WO2017162754A1. The other authors have no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Preimplantation Diagnosis , Aneuploidy , Blastocyst/metabolism , DNA Copy Number Variations , Embryo Culture Techniques , Female , Genetic Testing/methods , Haplotypes , Humans , Pedigree , Pregnancy , Preimplantation Diagnosis/methods , Prospective Studies , Reproduction , Trisomy
2.
Hum Reprod ; 34(4): 758-769, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30838420

ABSTRACT

STUDY QUESTION: What is the accuracy of preimplantation genetic testing for aneuploidies (PGT-A) when considering human peri-implantation outcomes in vitro? STUDY ANSWER: The probability of accurately diagnosing an embryo as abnormal was 100%, while the proportion of euploid embryos classified as clinically suitable was 61.9%, yet if structural and mosaic abnormalities were not considered accuracy increased to 100%, with a 0% false positive and false negative rate. WHAT IS ALREADY KNOWN: Embryo aneuploidy is associated with implantation failure and early pregnancy loss. However, a proportion of blastocysts are mosaic, containing chromosomally distinct cell populations. Diagnosing chromosomal mosaicism remains a significant challenge for PGT-A. Although mosaic embryos may lead to healthy live births, they are also associated with poorer clinical outcomes. Moreover, the direct effects of mosaicism on early pregnancy remain unknown. Recently, developed in vitro systems allow extended embryo culture for up to 14 days providing a unique opportunity for modelling chromosomal instability during human peri-implantation development. STUDY DESIGN, SIZE, DURATION: A total of 80 embryos were cultured to either 8 (n = 7) or 12 days post-fertilisation (dpf; n = 73). Of these, 54 were PGT-A blastocysts, donated to research following an abnormal (n = 37) or mosaic (n = 17) diagnosis. The remaining 26 were supernumerary blastocysts, obtained from standard assisted reproductive technology (ART) cycles. These embryos underwent trophectoderm (TE) biopsy prior to extended culture. PARTICIPANTS/MATERIALS, SETTING, METHODS: We applied established culture protocols to generate embryo outgrowths. Outgrowth viability was assessed based on careful morphological evaluation. Nine outgrowths were further separated into two or more portions corresponding to inner cell mass (ICM) and TE-derived lineages. A total of 45 embryos were selected for next generation sequencing (NGS) at 8 or 12 dpf. We correlated TE biopsy profiles to both culture outcomes and the chromosomal status of the embryos during later development. MAIN RESULTS AND THE ROLE OF CHANCE: Of the 73 embryos cultured to 12 dpf, 51% remained viable, while 49% detached between 8 and 12 dpf. Viable, Day 12 outgrowths were predominately generated from euploid blastocysts and those diagnosed with trisomies, duplications or mosaic aberrations. Conversely, monosomies, deletions and more complex chromosomal constitutions significantly impaired in vitro development to 12 dpf (10% vs. 77%, P < 0.0001). When compared to the original biopsy, we determined 100% concordance for uniform numerical aneuploidies, both in whole outgrowths and in the ICM and TE-derived outgrowth portions. However, uniform structural variants were not always confirmed later in development. Moreover, a high proportion of embryos originally diagnosed as mosaic remained viable at 12 dpf (58%). Of these, 71% were euploid, with normal profiles observed in both ICM and TE-derived lineages. Based on our validation data, we determine a 0% false negative and 18.5% false positive error rate when diagnosing mosaicism. Overall, our findings demonstrate a diagnostic accuracy of 80% in the context of PGT-A. Nevertheless, if structural and mosaic abnormalities are not considered, accuracy increases to 100%, with a 0% false positive and false negative rate. LIMITATIONS REASONS FOR CAUTION: The inherent limitations of extended in vitro culture, particularly when modelling critical developmental milestones, warrant careful interpretation. WIDER IMPLICATIONS OF THE FINDINGS: Our findings echo current prenatal testing data and support the high clinical predictive value of PGT-A for diagnosing uniform numerical aneuploidies, as well as euploid chromosomal constitutions. However, distinguishing technical bias from biological variability will remain a challenge, inherently limiting the accuracy of a single TE biopsy for diagnosing mosaicism. STUDY FUNDING, COMPETING INTEREST(S): This research is funded by the Ghent University Special Research Fund (BOF01D08114) awarded to M.P., the Research Foundation-Flanders (FWO.KAN.0005.01) research grant awarded to B.H. and De Snoo-van't Hoogerhuijs Stichting awarded to S.M.C.d.S.L. We thank Ferring Pharmaceuticals (Aalst, Belgium) for their unrestricted educational grant. The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Aneuploidy , Embryo Culture Techniques/methods , Embryo Implantation/genetics , Genetic Testing/methods , Mosaicism/embryology , Preimplantation Diagnosis/methods , Adult , Biopsy/methods , Blastocyst/metabolism , Blastocyst/pathology , Data Accuracy , Female , High-Throughput Nucleotide Sequencing , Humans , Optical Imaging , Pregnancy , Young Adult
3.
Hum Reprod ; 33(7): 1342-1354, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29796631

ABSTRACT

STUDY QUESTION: To what extent does a trophectoderm (TE) biopsy reliably reflect the chromosomal constitution of the inner cell mass (ICM) in human blastocysts? SUMMARY ANSWER: Concordance between TE and ICM was established in 62.1% of the embryos analysed. WHAT IS KNOWN ALREADY: Next generation sequencing (NGS) platforms have recently been optimised for preimplantation genetic testing for aneuploidies (PGT-A). However, higher sensitivity has led to an increase in reports of chromosomal mosaicism within a single TE biopsy. This has raised substantial controversy surrounding the prevalence of mosaicism in human blastocysts and the clinical implications of heterogeneity between the TE and ICM. STUDY DESIGN, SIZE, DURATION: To define the distribution and rate of mosaicism in human blastocysts, we assessed chromosomal profiles of the ICM and multiple TE portions obtained from the same embryo. We evaluated donated embryos with an unknown chromosomal profile (n = 34), as well as PGT-A blastocysts, previously diagnosed as abnormal or mosaic (n = 24). Our intra-embryo comparison included a total of 232 samples, obtained from 58 embryos. PARTICIPANTS/MATERIALS, SETTING, METHODS: Four embryo samples, including the ICM and three distinct TE portions, were acquired from good quality blastocysts by micromanipulation. Whole genome amplification (WGA), followed by NGS was performed on all embryo segments. Profiles were compared between samples from the same embryo, while the results from pretested blastocysts were further correlated to the original report. The embryos investigated in our untested group were obtained from good prognosis patients (n = 25), with maternal age ranging from 23 to 39 years. For the pretested embryo group, maternal age ranged from 23 to 40 years (n = 18). MAIN RESULTS AND THE ROLE OF CHANCE: We uncover chromosomal mosaicism, involving both numerical and structural aberrations, in up to 37.9% of the blastocysts analysed. Within the untested group, the overall concordance between the ICM and all TE portions was 55.9%. A normal ICM was detected in 20.6% of blastocysts for which at least one TE portion showed a chromosomal aberration. Conversely, 17.6% of embryos presented with mosaic or uniform abnormalities within the ICM, while showing normal or mosaic TE profiles. For the pretested blastocysts, the overall concordance between the ICM and all TE samples was 70.8%. However, 50% of embryos previously diagnosed with mosaicism did not confirm the original diagnosis. Notably, 31.3% of embryos with a mosaic aberration reported in the original TE biopsy, revealed a euploid profile in the ICM and all three TE samples. Taken together, concordance between the ICM and all TE portions was established in 62.1% of blastocysts, across both embryo groups. Finally, we could not observe a significant effect of age on embryo mosaicism (P = 0.101 untested group; P = 0.7309 pretested group). Similarly, ICM and TE quality were not found to affect the occurrence of chromosomal mosaicism (P = 0.718 and P = 0.462 untested group; P = 1.000 and P = 0.2885 pretested group). LARGE SCALE DATA: All data that support the findings of this study are available online in Vivar (http://cmgg.be/vivar) upon request. LIMITATIONS, REASONS FOR CAUTION: Evaluating biological variation in some instances remains challenging. The technological limitations of sampling mitotic errors that lead to mosaicism, as well as WGA artefacts, warrant careful interpretation. WIDER IMPLICATIONS OF THE FINDINGS: Our results highlight the complex nature of genetic (in)stability during early ontogenesis and indicate that blastocysts harbour a higher rate of chromosomal mosaicism than may have been anticipated. Moreover, our findings reveal an overall high diagnostic sensitivity and relatively low specificity in the context of PGT-A. This suggests that a considerable proportion of embryos are potentially being classified as clinically unsuitable. Ultimately, more precise quantification will benefit the clinical management of embryo mosaicism. STUDY FUNDING/COMPETING INTEREST(S): M.P. is supported by the Special Research Fund, Bijzonder Onderzoeksfonds (BOF01D08114). J.T. and L.D. are supported by the agency for innovation through science (131673, 141441). B.H. and this research are supported by the Special Research Fund, Bijzonder Onderzoeksfonds (BOF15/GOA/011). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: Not applicable.


Subject(s)
Blastocyst , Genetic Testing , Mosaicism , Preimplantation Diagnosis/methods , Adult , Embryonic Development/physiology , Female , Humans , Maternal Age , Pregnancy , Young Adult
4.
Mol Syndromol ; 5(1): 32-5, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24550763

ABSTRACT

We describe a boy presenting with intellectual disability and dysmorphic features in whom a cryptic microdeletion in chromosome band 2q12.1 was identified with array CGH. The deletion results in a loss of the POU3F3 and MRPS9 genes. In this paper, we discuss the possible role of POU3F3 haploinsufficiency in relation to the boy's phenotype.

SELECTION OF CITATIONS
SEARCH DETAIL
...