Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766218

ABSTRACT

The role of red blood cells (RBCs) in tumorigenesis is poorly understood. We previously identified RBC-microRNAs with aberrations linked to lung cancer, including miR-93-5p. Here we find that miR-93-5p levels are elevated in RBC-derived exosomes among lung cancer patients and are associated with their shorter survivals. RBC-derived miR-93-5p transfers to cancer cells primarily through the exosomal pathway. The transferred RBC-miR-93-5p can target PTEN in cancer cells, and hence increase cell proliferation, invasion, and migration. RBC-derived miR-93-5p accelerates, whereas targeting miR-93-5p diminishes tumor growth in xenograft models. These findings reveal a novel biological function of RBCs in tumorigenesis, where they facilitate cancer progression by transferring the oncomiR via exosomes, thereby offering new diagnostic and treatment strategies for lung cancer.

2.
medRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38585975

ABSTRACT

Introduction: Lung cancer leads in cancer-related deaths. Disparities are observed in lung cancer rates, with African Americans (AAs) experiencing disproportionately higher incidence and mortality compared to other ethnic groups. Non-coding RNAs (ncRNAs) play crucial roles in lung tumorigenesis. Our objective was to identify ncRNA biomarkers associated with the racial disparity in lung cancer. Methods: Using droplet digital PCR, we examined 93 lung-cancer-associated ncRNAs in the plasma and sputum samples from AA and White American (WA) participants, which included 118 patients and 92 cancer-free smokers. Subsequently, we validated our results with a separate cohort comprising 56 cases and 72 controls. Results: In the AA population, plasma showed differential expression of ten ncRNAs, while sputum revealed four ncRNAs when comparing lung cancer patients to the control group. In the WA population, the plasma displayed eleven ncRNAs, and the sputum had five ncRNAs showing differential expression between the lung cancer patients and the control group. For AAs, we identified a three-ncRNA panel (plasma miRs-147b, 324-3p, 422a) diagnosing lung cancer in AAs with 86% sensitivity and 89% specificity. For WAs, a four-ncRNA panel was developed, comprising sputum miR-34a-5p and plasma miRs-103-3p, 126-3p, 205-5p, achieving 88% sensitivity and 87% specificity. These panels remained effective across different stages and histological types of lung tumors and were validated in the independent cohort. Conclusions: The ethnicity-related ncRNA signatures have promise as biomarkers to address the racial disparity in lung cancer.

3.
medRxiv ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38633795

ABSTRACT

African American (AA) populations present with notably higher incidence and mortality rates from lung cancer in comparison to other racial groups. Here, we elucidate the contribution of long non-coding RNAs (lncRNAs) in the racial disparities and their potential clinical applications in both diagnosis and therapeutic strategies. AA patients had elevated plasma levels of MALAT1 and PVT1 compared with cancer-free smokers. Incorporating these lncRNAs as plasma biomarkers, along with smoking history, achieved 81% accuracy in diagnosis of lung cancer in AA patients. We observed a rise in MALAT1 expression, correlating with increased levels of monocyte chemoattractant protein-1 (MCP-1) and CD68, CD163, CD206, indicative of tumor-associated macrophages in lung tumors of AA patients. Forced MALAT1 expression led to enhanced growth and invasiveness of lung cancer cells, both in vitro and in vivo, accompanied by elevated levels of MCP-1, CD68, CD163, CD206, and KI67. Mechanistically, MALAT1 acted as a competing endogenous RNA to directly interact with miR-206, subsequently affecting MCP-1 expression and macrophage activity, and enhanced the tumorigenesis. Targeting MALAT1 significantly reduced tumor sizes in animal models. Therefore, dysregulated MALAT1 contributes to lung cancer disparities in AAs by modulating the tumor immune microenvironment through its interaction with miR-206, thereby presenting novel diagnostic and therapeutic targets.

4.
J Pers Med ; 14(1)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38276239

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths among both men and women. African Americans (AAs) experience disproportionately higher incidence and mortality compared to other ethnic groups. Cytokines play multifaceted and crucial roles in the initiation, progression, and spread of cancer. Our aim was to identify cytokine biomarkers for the early detection of lung cancer in AAs. We examined eight key cytokines (Interleukin-1, IL-6, IL-8, IL-10, IL-12p70, monocyte chemotactic protein-1 (MCP-1), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α)) in the plasma of 104 lung cancer patients and 48 cancer-free individuals using the FirePlex Immunoassay. These findings were subsequently validated in a separate cohort of 58 cases and 58 controls. IL-8, IFN-γ, and TNF-α exhibited elevated levels in both AA and White American (WA) lung cancer cases. Notably, IL-10 and MCP-1 displayed significant increases specifically in AA lung cancer patients, with MCP-1 levels associated with lung adenocarcinoma cases. Conversely, WA lung cancer patients showed heightened IL-6 levels, particularly linked to lung adenocarcinoma. The combined use of specific cytokines showed promise in lung cancer diagnosis, with IL-8, IL-10, and MCP-1 achieving 76% sensitivity and 79% specificity in AAs and IL-6 and IL-8 combined offering 76% sensitivity and 74% specificity in WAs. These diagnostic biomarkers were validated in the independent cohort. The ethnicity-related cytokine biomarkers hold promise for diagnosing lung cancer in AAs and WAs, potentially addressing the observed racial disparity.

5.
Cancers (Basel) ; 15(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38001571

ABSTRACT

BACKGROUND: Despite extensive endeavors to establish cell-free circulating biomarkers for lung cancer diagnosis, clinical adoption remains elusive. Noteworthy, emergent evidence suggests the pivotal roles of red blood cells (RBCs) and their derivatives in tumorigenesis, illuminating potential avenues for diagnostic advancements using blood cell-derived microRNAs (miRNAs). METHODS: We executed microarray analyses on three principal blood cell types-RBCs, peripheral blood mononuclear cells (PBMCs), and neutrophils-encompassing 26 lung cancer patients and 26 healthy controls. Validation was performed using droplet digital PCR within an additional cohort comprising 42 lung cancer and 39 control cases. RESULTS: Our investigation unearthed distinct miRNA profiles associated with lung cancer across all examined blood cell types. Intriguingly, RBC-miRNAs emerged as potential novel biomarkers for lung cancer, an observation yet to be documented. Importantly, integrating miRNAs from disparate blood cell types yielded a superior diagnostic accuracy for lung cancer over individual cell-type miRNAs. Subsequently, we formulated three diagnostic panels, adeptly discerning non-small cell lung cancer, adenocarcinoma, and squamous cell carcinoma, maintaining consistency across various disease stages. CONCLUSION: RBC-derived molecules introduce novel cancer biomarkers, and exploiting miRNA profiles across varied blood cell types unveils a promising frontier for lung cancer's early detection and histological classification.

6.
Microorganisms ; 11(3)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36985157

ABSTRACT

Lung cancer is a leading cause of cancer deaths and early diagnosis can significantly improve outcomes. Pathogenic bacteria have been shown to play a role in tumorigenesis and its analysis provides a new approach for cancer diagnosis. To evaluate the potential of bacteria as plasma biomarkers for early lung cancer detection, we analyzed eight lung-cancer-related bacterial genera in 58 lung cancer patients and 58 controls using ddPCR. Our results showed that five genera had higher DNA abundance in lung tumor tissues compared with normal tissues. Three of these genera (Selenomonas, Streptococcus, and Veillonella) displayed consistent changes in plasma, with higher DNA abundance in lung cancer patients compared with controls. When used as a panel, these three bacterial genera had a sensitivity of 75% and specificity of 78% for lung cancer detection, regardless of stage or histology. The performance of this biomarker panel was confirmed in an independent cohort of 93 lung cancer cases and 93 controls. Thus, circulating bacterial DNA has the potential to be used as plasma biomarkers for early lung cancer detection.

7.
iScience ; 26(2): 105923, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36685035

ABSTRACT

Streptococcus pneumoniae (SP) is associated with lung cancer, yet its role in the tumorigenesis remains uncertain. Herein we find that SP attaches to lung cancer cells via binding pneumococcal surface protein C (PspC) to platelet-activating factor receptor (PAFR). Interaction between PspC and PAFR stimulates cell proliferation and activates PI3K/AKT and nuclear factor kB (NF-kB) signaling pathways, which trigger a pro-inflammatory response. Lung cancer cells infected with SP form larger tumors in BALB/C mice compared to untreated cells. Mice treated with tobacco carcinogen and SP develop more lung tumors and had shorter survival period than mice treated with the carcinogen alone. Mutating PspC or PAFR abolishes tumor-promoting effects of SP. Overabundance of SP is associated with the survival. SP may play a driving role in lung tumorigenesis by activating PI3K/AKT and NF-kB pathways via binding PspC to PAFR and provide a microbial target for diagnosis and treatment of the disease.

8.
J Clin Med ; 11(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36498497

ABSTRACT

Cytokines play crucial roles in tumorigenesis and are potential biomarkers for cancer diagnosis. An Enzyme-linked Immunosorbent Assay (ELISA) is commonly used to measure cytokines but has a low sensitivity and can only detect a single target at a time. CRISPR-Associated Proteins (Cas) can ultra-sensitively and specifically detect nucleic acids and is revolutionizing molecular diagnostics. Here, we design a microplate-based CRISPR-ELISA assay to simultaneously profile multiple cytokines, in which antibodies are coupled with ssDNA to form antibody-ssDNA complexes that bridges CRISPR/Cas12a and ELISA reactions. The ssDNA triggers the Cas12a collateral cleavage activity and releases the fluorescent reporters to generate amplified fluorescent signals in the ELISA detection of cytokines. The CRISPR-ELISA assay can simultaneously measure multiple cytokines with a significantly higher sensitivity compared with conventional ELISA. Using the CRISPR-ELISA assay to profile plasma cytokines in 127 lung cancer patients and 125 cancer-free smokers, we develop a panel of plasma cytokine biomarkers (IL-6, IL-8, and IL-10) for early detection of the disease, with 80.6% sensitivity and 82.0% specificity. The CRISPR-ELISA assay may provide a new approach to the discovery of cytokine biomarkers for early lung cancer detection.

9.
J Pers Med ; 11(5)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946992

ABSTRACT

Altered miRNA expression and DNA methylation have highly active and diverse roles in carcinogenesis. Simultaneous detection of the molecular aberrations may have a synergistic effect on the diagnosis of malignancies. Herein, we develop a high-throughput assay for detecting multiple miRNAs and DNA methylation using droplet digital PCR (ddPCR) coupled with a 96-microwell plate. The microplate-based ddPCR could absolutely and reproducibly quantify 15 miRNAs and 14 DNA methylation sites with a high sensitivity (one copy/µL and 0.1%, respectively). Analyzing sputum and plasma of 40 lung cancer patients and 36 cancer-free smokers by this approach identified an integrated biomarker panel consisting of two sputum miRNAs (miRs-31-5p and 210-3p), one sputum DNA methylation (RASSF1A), and two plasma miRNAs (miR-21-5p and 126) for the diagnosis of lung cancer with higher sensitivity and specificity compared with a single type of biomarker. The diagnostic value of the integrated biomarker panel for the early detection of lung cancer was confirmed in a different cohort of 36 lung cancer patients and 39 cancer-free smokers. The high-throughput assay for quantification of multiple molecular aberrations across sputum and plasma could improve the early detection of lung cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...