Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Dalton Trans ; 53(22): 9441-9451, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38766878

ABSTRACT

Synthesis of a novel binuclear Cu(II) carboxylate complex under ambient laboratory conditions is presented. The complex exhibits a paddle wheel structure in which the axial positions are occupied by two copper atoms instead of two water molecules. The synthesized complex was characterized by single-crystal X-ray crystallography, FT-IR, X-ray diffraction, and UV-visible spectroscopy techniques. The thermal stability of the metal complex was studied by the thermogravimetric analysis study. The synthesized metal complex was employed for the synthesis of metal complex-coated polyether sulfone (PES) membranes which were characterized before and after filtration using the FESEM technique. The photocatalytic efficiency of the metal complex was studied for the degradation of methylene blue dye under UV irradiation in the presence of H2O2 and was compared with the photodegradation efficiency of the metal complex-coated polyether sulfone (PES) membrane.

2.
J Fluoresc ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607529

ABSTRACT

Porphyrins and porphyrin derivatives have been intensively explored for a number of applications such as sensing, catalysis, adsorption, and photocatalysis due to their outstanding photophysical properties. Their usage in sensing applications, however, is limited by intrinsic defects such as physiological instability and self-quenching. To reduce self-quenching susceptibility, researchers have developed porphyrin metal-organic frameworks (MOFs). Metal-organic frameworks (MOFs), a unique type of hybrid porous coordination polymers comprised of metal ions linked by organic linkers, are gaining popularity. Porphyrin molecules can be integrated into MOFs or employed as organic linkers in the production of MOFs. Porphyrin-based MOFs are a separate branch of the huge MOF family that combines the distinguishing qualities of porphyrins (e.g., fluorescent nature) and MOFs (e.g., high surface area, high porosity) to enable sensing applications with higher sensitivity, specificity, and extended target range. The key synthesis techniques for porphyrin-based MOFs, such as porphyrin@MOFs, porphyrinic MOFs, and composite porphyrinic MOFs, are outlined in this review article. This review article focuses on current advances and breakthroughs in the field of porphyrin-based MOFs for detecting a variety of targets (for example, metal ions, anions, explosives, biomolecules, pH, and toxins). Finally, the issues and potential future uses of this class of emerging materials for sensing applications are reviewed.

SELECTION OF CITATIONS
SEARCH DETAIL