Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2302912, 2023 May 13.
Article in English | MEDLINE | ID: mdl-37177904

ABSTRACT

Core-shell catalysts with functional shells can increase the activity and stability of the catalysts in selective catalytic reduction of NOx with ammoniax . However, the conventional approaches based on multistep fabrication for core-shell structures encounter persistent restrictions regarding strict synthesis conditions and limited design flexibility. Herein, a facile coaxial 3D printing strategy is for the first time developed to construct zeolite-based core-shell monolithic catalysts with interconnected honeycomb structures, in which the hydrophilic noncompact silica serves as shell and Cu-SSZ-13 zeolite acts as core. Compared to a Cu-SSZ-13 monolith which suffers from the interfacial diffusion, the SiO2 shell layer can increase the accessibility of active sites over Cu-SSZ-13@SiO2 , resulting in a 10-20% higher NO conversion at200-550 °C under 300 000 cm3 g-1 h-1 . Meanwhile, a thicker SiO2 shell enhances the hydrothermal stability of the aged catalyst by inhibiting the dealumination and the formation of CuOx . Other representative monolithic catalysts with different topological zeolites as shell and diverse metal oxides as the core can be also realized by this coaxial 3D printing. This strategy allows multiple porous materials to be directly integrated, which allows for flexible design and fabrication of various core-shell monolithic catalysts with customized functionalities.

2.
Angew Chem Int Ed Engl ; 60(44): 23756-23762, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34448329

ABSTRACT

The longevity and reusability of N95-grade filtering facepiece respirators (N95 FFRs) are limited by consecutive donning and disinfection treatments. Herein, we developed stable N97 nanofibrous respirators based on chemically modified surface to enable remarkable filtration characteristics via polarity driven interaction. This was achieved by a thin-film coated polyacrylonitrile nanofibrous membrane (TFPNM), giving an overall long-lasting filtration performance with high quality factor at 0.42 Pa-1 (filtration efficiency: over 97 %; pressure drop: around 10 Pa), which is higher than that of the commercial N95 FFRs (0.10-0.41 Pa-1 ) tested with a flow rate of 5 L min-1 and the 0.26 µm NaCl aerosol. A coxsackie B4 virus filtration test demonstrated that TFPNM also had strong virus capture capacity of 97.67 %. As compared with N95 FFRs, the TFPNM was more resistant to a wider variety of disinfection protocols, and the overall filtration characteristics remained N97 standard.


Subject(s)
Enterovirus B, Human/metabolism , Nanofibers/chemistry , Ventilators, Mechanical/virology
3.
Chem Sci ; 12(17): 6136-6142, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33996010

ABSTRACT

There has been great interest in the fabrication of solid surfaces with desirable under-liquid wettability, and especially under-liquid dual-lyophobicity, because of their potential for widespread use. However, there remains the lack of a general principle to modulate the under-liquid wettability in terms of surface energy (SE). Herein, we found that the relative proportion between the polar and dispersive components in SE that reflects the competition between hydrophilicity and lipophilicity governs the under-liquid wettability of the solid surface. For the first time, we introduced hydrophilic-lipophilic balance (HLB) calculated solely based on the amount and type of hydrophilic and lipophilic fragments in surface molecules to rapidly predict the under-liquid wettability of a solid surface, thereby guiding the fabrication of solid surfaces with desirable under-liquid wettability. Accordingly, the under-liquid dual superlyophobic surfaces in a nonpolar oil-water-solid system were fabricated by grafting molecules with appropriate HLB values (e.g., 6.341-7.673 in a cyclohexane-water-solid system) onto porous nanofibrous membranes, which were able to achieve continuous separation of oil-water mixtures. This work provides reasonable guidance for the fabrication of solid surfaces with targeted under-liquid wettability, which may lead to advanced applications in oil-water-solid systems.

4.
Nature ; 592(7855): 551-557, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33883734

ABSTRACT

Solid-state lithium (Li)-air batteries are recognized as a next-generation solution for energy storage to address the safety and electrochemical stability issues that are encountered in liquid battery systems1-4. However, conventional solid electrolytes are unsuitable for use in solid-state Li-air systems owing to their instability towards lithium metal and/or air, as well as the difficulty in constructing low-resistance interfaces5. Here we present an integrated solid-state Li-air battery that contains an ultrathin, high-ion-conductive lithium-ion-exchanged zeolite X (LiX) membrane as the sole solid electrolyte. This electrolyte is integrated with cast lithium as the anode and carbon nanotubes as the cathode using an in situ assembly strategy. Owing to the intrinsic chemical stability of the zeolite, degeneration of the electrolyte from the effects of lithium or air is effectively suppressed. The battery has a capacity of 12,020 milliamp hours per gram of carbon nanotubes, and has a cycle life of 149 cycles at a current density of 500 milliamps per gram and at a capacity of 1,000 milliamp hours per gram. This cycle life is greater than those of batteries based on lithium aluminium germanium phosphate (12 cycles) and organic electrolytes (102 cycles) under the same conditions. The electrochemical performance, flexibility and stability of zeolite-based Li-air batteries confer practical applicability that could extend to other energy-storage systems, such as Li-ion, Na-air and Na-ion batteries.

5.
ACS Appl Mater Interfaces ; 11(46): 43409-43415, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31659893

ABSTRACT

Particulate matter (PM) discharged along with the rapid industrialization and urbanization hazardously threatens ecosystems and human health. Membrane-based filtration technology has been proved to be an effective approach to capture PM from the polluted air. However, the fabrication of filtration membranes with excellent reusability and antibacterial activity has rarely been reported. Herein, the flexible multifunctional porous nanofibrous membranes were fabricated by embedding Ag nanoparticles into the electrospun porous SiO2-TiO2 nanofibers via an impregnation method, which integrated the abilities of PM filtration and antibacterial performance. Compared with the reported air filters, the resultant membrane (Ag@STPNM) with high surface polarity and porous structure possessed the low density, high removal efficiency, and small pressure drop. For instance, the removal efficiency and the pressure drop of Ag@STPNM with a basis weight of only 3.9 g m-2 for PM2.5 reached 98.84% and 59 Pa, respectively. In terms of the excellent thermal stability of Ag@STPNM, the adsorbed PM could be removed simply by a calcination process. The filtration performance of Ag@STPNM kept stable during five purification-regeneration cycles and the long-time filtration for 12 h, exhibiting excellent recyclability and durability. Furthermore, the embedded Ag nanoparticles could achieve the effective resistance to the breeding of bacteria on Ag@STPNM, giving the bacteriostatic rate of 95.8%. Therefore, Ag@STPNM holds promising potentials as a highly efficient, reusable, and antibacterial air filter in the practical purification of the indoor environment or personal air.

6.
Chem Sci ; 10(25): 6382-6389, 2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31341594

ABSTRACT

Surfaces with under-liquid dual superlyophobicity have garnered tremendous interest because of their promising applications, but their unexplored underlying nature restricts the designed construction of such surfaces. Herein, we coated the thin-film composites with different terminal groups over the electrospun polyacrylonitrile nanofibrous membranes, which afforded the membranes excellent stability in organic solvents, as well as modulated under-liquid wetting behaviors. Among them, the representative under-liquid dual superlyophobic 4-cyan-Ph-terminated membrane could realize highly efficient separation of all types of oil/water mixtures and even emulsions. Moreover, we found that the under-liquid wetting behaviors could be classified in terms of the intrinsic water contact angle (θ w). By comparing the total interfacial energy, we proved that the under-liquid dual lyophobic surfaces were thermodynamically metastable. On this basis, we could predict the θ w of rough surfaces with the under-liquid dual lyophobicity in a given oil-water-solid system (e.g., 47.3-89.1° in cyclohexane-water-solid system, R = 2). This work provides a design principle for the fabrication of under-liquid dual superlyophobic surfaces, which will open potential applications in diverse fields in terms of such smart surfaces.

7.
ACS Appl Mater Interfaces ; 11(1): 1672-1679, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30540435

ABSTRACT

Both oil spill and heavy-metal ions in the industrial wastewater cause severe problems for aquatic ecosystem and human health. In the present work, the electrospun superamphiphilic SiO2-TiO2 porous nanofibrous membranes (STPNMs) comprised of intrafiber mesopores and interfiber macropores are modified by an amino-silanization reaction, which affords the membrane (ASTPNMs) the ability to simultaneously remove the oil contaminants and the water-soluble heavy-metal ions from wastewater. The underwater superoleophobicity of ASTPNMs facilitates the highly efficient separation of water and various oils, even emulsifier-stabilized emulsion. Meanwhile, an optimal modification time (15 min, ASTPNM-15) is important for maintaining the under-oil superhydrophilicity of the membrane, based on which the oil contaminant in membrane can be easily cleaned by water alone, showing excellent self-cleaning performance. The adsorption of Pb2+ over ASTPNM-15 reaches equilibrium at around 20 min, and the monolayer adsorption capacity is 142.86 mg g-1 at pH = 5 at 20 °C. In the breakthrough processes, the permeation volume of ASTPNM-15 for the purification of Pb2+ (5 ppm, pH = 5) reaches 160 mL when the concentration of Pb2+ in the filtrate increases to 0.05 ppm. The separation efficiencies of ASTPNM-15 for simulated wastewater containing both oil spill and various heavy-metal ions (Pb2+, Cr3+, Ni2+) are larger than 99.5%. In addition, the separation capacity keeps stable over five purification-regeneration cycles without obvious decrease, proving excellent recyclability and reusability of ASTPNM-15 for practical applications.

8.
Nat Commun ; 8(1): 1951, 2017 11 30.
Article in English | MEDLINE | ID: mdl-29192154

ABSTRACT

In Table 1 of this Article, the third row in the furthest right column contains a typographical error and should read 'NH', rather than 'NM', corresponding to n-hexane as the infused liquid.

9.
Nat Commun ; 8(1): 575, 2017 09 18.
Article in English | MEDLINE | ID: mdl-28924164

ABSTRACT

Materials with selective wettabilities are widely used for effective liquid separation in environmental protection and the chemical industry. Current liquid separation strategies are primarily based on covalent modification to control the membranes' surface energy, or are based on gating mechanisms to accurately tune the gating threshold of the transport substance. Herein, we demonstrate a simple and universal polarity-based protocol to regulate the wetting behavior of superamphiphilic porous nanofibrous membranes by infusing a high polar component of surface energy liquid into the membranes, forming a relatively stable liquid-infusion-interface to repel the immiscible low polar component of surface energy liquid. Even immiscible liquids with a surface energy difference as small as 2 mJ m-2, or emulsions stabilized by emulsifiers can be effectively separated. Furthermore, the infused liquid can be substituted by another immiscible liquid with a higher polar component of surface energy, affording successive separation of multiphase liquids.Separating immiscible liquids with small surface energy differences remains a challenge. Here, the authors develop a polarity-based strategy for the separation of multiphase mixtures of immiscible liquids, even those with surface energy differences as small as 2 mJ m-2.

10.
Sci Rep ; 4: 7276, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25450726

ABSTRACT

Zeolite fibers have attracted growing interest for a range of new applications because of their structural particularity while maintaining the intrinsic performances of the building blocks of zeolites. The fabrication of uniform zeolite fibers with tunable hierarchical porosity and further exploration of their catalytic potential are of great importance. Here, we present a versatile and facile method for the fabrication of hierarchical ZSM-5 zeolite fibers with macro-meso-microporosity by coaxial electrospinning. Due to the synergistic integration of the suitable acidity and the hierarchical porosity, high yield of propylene and excellent anti-coking stability were demonstrated on the as-prepared ZSM-5 hollow fibers in the catalytic cracking reaction of iso-butane. This work may also provide good model catalysts with uniform wall thickness and tunable porosity for studying a series of important catalytic reactions.

12.
Chem Commun (Camb) ; 47(10): 2850-2, 2011 Mar 14.
Article in English | MEDLINE | ID: mdl-21253628

ABSTRACT

An intelligent pH-responsive carrier and release system based on DNA nanoswitch-controlled organization of gold nanoparticles (AuNPs) attached to mesoporous silica (MS) has been designed and demonstrated.


Subject(s)
DNA/chemistry , Nanotechnology/methods , Delayed-Action Preparations , Gold/chemistry , Hydrogen-Ion Concentration , Metal Nanoparticles/chemistry , Nucleic Acid Hybridization , Porosity , Silicon Dioxide/chemistry , Water/chemistry
13.
Langmuir ; 26(13): 11291-6, 2010 Jul 06.
Article in English | MEDLINE | ID: mdl-20337483

ABSTRACT

A multifluidic coaxial electrospinning approach is reported here to fabricate core/shell ultrathin fibers with a novel nanowire-in-microtube structure from more optional fluid pairs than routine coaxial electrospinning. The advantage of this approach lies in the fact that it introduces an extra middle fluid between the core and shell fluids of traditional coaxial electrospinning, which can work as an effective spacer to decrease the interaction of the other two fluids. Under the protection of a proper middle fluid, more fluid pairs, even mutually miscible fluids, can be operated to generate "sandwich"-structured ultrathin fibers with a sharp boundary between the core and shell materials. It thereby largely extends the scope of optional materials. Selectively removing the middle layer of the as-prepared fibers results in an interesting nanowire-in-microtube structure. Either homogeneous or heterogeneous fibers with well-tailored sandwich structures have been successfully fabricated. This method is an important extension of traditional co-electrospinning that affords a more universal avenue to preparing core/shell fibers; moreover, the special hollow cavity structure may introduce some extra properties into the conventional core/shell structure, which may find potential applications such as optical applications, microelectronics, and others.


Subject(s)
Nanowires/chemistry , Biocompatible Materials , Nanoshells , Nanotechnology , Titanium/chemistry
14.
Inorg Chem ; 45(9): 3588-93, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16634589

ABSTRACT

Three new open-framework transition-metal borophosphates Na5(H3O){M(II)3[B3O3(OH)]3(PO4)6}.2H2O (M(II) = Mn, Co, Ni) (denoted as MBPO-CJ25) have been synthesized under mild hydrothermal conditions. Single-crystal X-ray diffraction analyses reveal that the three compounds possess isostructural three-dimensional (3D) open frameworks with one-dimensional 12-ring channels along the [001] direction. Notably, the structure can also be viewed as composed of metal phosphate layers [M(II)(PO4)2]4- with Kagomé topology, which are further connected by [B3O7(OH)] triborates, giving rise to a 3D open framework. The guest water molecules locate in the 12-ring channels. Partial Na+ ions reside in the 10-ring side pockets within the wall of the 12-ring channels, and the other Na+ ions and protonated water molecules locate in the 6-ring windows delimited by MO6 and PO4 polyhedra to compensate for the negative charges of the anionic framework. These compounds show a high thermal stability and are stable upon calcinations at ca. 500 degrees C. Ionic conductivities, due to the motion of Na+ ions, are measured for these three compounds. They have similar activation energies of 1.13-1.25 eV and conductivities of 2.7 x 10(-7)-9.9 x 10(-7) S cm(-1) at 300 degrees C. Magnetic measurements reveal that there are very weak antiferromagnetic interactions among the metal centers of the three compounds. Crystal data: MnBPO-CJ25, hexagonal, P6(3)/m (No. 176), a = 11.9683(5) A, c = 12.1303(6) A, and Z = 2; CoBPO-CJ25, hexagonal, P6(3)/m (No. 176), a = 11.7691(15) A, c = 12.112(2) A, and Z = 2; NiBPO-CJ25, hexagonal, P6(3)/m (No. 176), a = 11.7171(5) A, c = 12.0759(7) A, and Z = 2.

SELECTION OF CITATIONS
SEARCH DETAIL
...