Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1281411, 2023.
Article in English | MEDLINE | ID: mdl-38026974

ABSTRACT

Cardamine circaeoides Hook.f. & Thomson (CC), a herb of the genus Cardamine (family Brassicaceae), has a rich historical usage in China for both culinary and medicinal purposes. It is distinguished by its remarkable ability to hyperaccumulate selenium (Se). CC has demonstrated efficacy in the prevention of metabolic disorders. However, investigations into the effects of CC on asymptomatic hyperuricemia remain scarce. The objective of this study is to elucidate the mechanism by which CC aqueous extract (CCE) exerts its anti-hyperuricemic effects on asymptomatic hyperuricemic rats induced by potassium oxonate (PO) by integrating metabolomics and network pharmacological analysis. Asymptomatic hyperuricemia was induced by feeding rats with PO (1000 mg/kg) and CCE (0.75, 1.5, or 3 g/kg) once daily for 30 days. Various parameters, including body weight, uric acid (UA) levels, histopathology of renal tissue, and inflammatory factors (IL-1ß, IL-6, IL-8, and TNF-α) were assessed. Subsequently, metabolomic analysis of kidney tissues was conducted to explore the effects of CCE on renal metabolites and the related pathways. Furthermore, network pharmacology was employed to explicate the mechanism of action of CCE components identified through UPLC-Q-TOF-MS analysis. Finally, metabolomic and network-pharmacology analyses were performed to predict crucial genes dysregulated in the disease model and rescued by CCE, which were then subjected to verification by RT-qPCR. The findings revealed that CCE significantly inhibited the UA levels from the 21st day to the 30th day. Moreover, CCE exhibited significant inhibition of IL-1ß, IL-6, IL-8, and TNF-α levels in renal tissues. The dysregulation of 18 metabolites and the tyrosine, pyrimidine, cysteine, methionine, sphingolipid, and histidine metabolism pathways was prevented by CCE treatment. A joint analysis of targets predicted using the network pharmacology approach and the differential metabolites found in metabolics predicted 8 genes as potential targets of CCE, and 3 of them (PNP gene, JUN gene, and ADA gene) were verified at the mRNA level by RT-qPCR. We conclude that CCE has anti-hyperuricemia effects and alleviates renal inflammation in a rat model of hyperuricemia, and these efficacies are associated with the reversal of increased ADA, PNP, and JUN mRNA expression in renal tissues.

2.
Article in English | MEDLINE | ID: mdl-36118093

ABSTRACT

Background: Oxidative stress and memory impairment have been implicated as common functional brain diseases. Nuclear factor E2-related factor 2 (Nrf2) is highly induced in oxidative stress, indicating that Nrf2 is an emerging target of memory therapy. This study aimed to investigate the effect of noni on brain memory impairment induced by hydrocortisone and its protective mechanism in mice. Methods: Male Kunming mice (n = 8/group) were given hydrocortisone by gastric gavage for 14 consecutive days to establish the memory impairment model, except for those in the control group. On the same day, the corresponding drugs were given by gastric gavage. The changes in ethology were examined. The brains were extracted and subjected to western blot analysis and biochemical analyses to assess the activities of antioxidative stress. Results: The middle- and high-dose noni groups exhibited ameliorated ethology, and the high-dose noni group exhibited increased cerebral protein expression of Nrf2, Kelch-like ECH-associated protein 1 (KEAP1), and haem oxygenase-1 (HO-1) compared to the model group. The arrangement of CA3 vertebral cells in the hippocampus of mice was slightly compact, and hyperchromasia and pyknosis were alleviated. Furthermore, biochemical analyses showed that the activities of enzymes related to oxidative stress in the high-dose noni group were increased. Conclusions: Noni might be a powerful antioxidant that can protect nerve cells and may possess potential benefits for the treatment of memory impairment.

3.
Int J Mol Sci ; 24(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36613632

ABSTRACT

Echinacea purpurea (L.) Moench (EP) is a well-known botanical supplement with antioxidant characteristics. However, the effects of EP on oxidative stress induced by hyperthyroidism have not yet been studied. This study was designed to evaluate the antioxidative effect of ethanolic Echinacea Purpurea (EEP) on hyperthyroidism-induced oxidative stress mice using an integrated strategy combining transcriptomics with network pharmacology analysis. Firstly, a hyperthyroidism mice model was induced via thyroxine (160 mg/kg) and EEP (1, 2, or 4 g/kg) once daily for 2 weeks. Body weight, thyroid-stimulating hormones, and oxidative stress markers were tested. Secondly, EEP regulating the potential genes at transcript level were analyzed. Thirdly, a network pharmacology based on the constituents of EEP identified using UPLC-Q-TOF-MS analysis was adopted. Finally, a joint analysis was performed to identify the key pathway. The results showed that EEP significantly changed the thyroid-stimulating hormones and oxidative stress markers. Meanwhile, RT-qPCR and Western Blotting demonstrated that the mechanism of the antioxidant effect of EEP reversed the mRNA expression of EHHADH, HMGCR and SLC27A2 and the protein expression of FABP and HMGCR in AMPK and PPAR signaling pathways. This study integrates transcriptomics with network pharmacology to reveal the mechanism of ameliorative effect of EEP on hyperthyroidism-induced oxidative stress.


Subject(s)
Echinacea , Hyperthyroidism , Oxidative Stress , Plant Extracts , Animals , Mice , Antioxidants/pharmacology , Echinacea/chemistry , Hormones , Network Pharmacology , Peroxisome Proliferator-Activated Receptors/metabolism , Plant Extracts/pharmacology , Signal Transduction , Transcriptome , Hyperthyroidism/complications , Hyperthyroidism/metabolism , Adenylate Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...