Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Anal Chim Acta ; 1297: 342348, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38438234

ABSTRACT

Signaling lipids (SLs) play a crucial role in various signaling pathways, featuring diverse lipid backbone structures. Emerging evidence showing the biological significance and biomedical values of SLs has strongly spurred the advancement of analytical approaches aimed at profiling SLs. Nevertheless, the dramatic differences in endogenous abundances across lipid classes as well as multiple isomers within the same lipid class makes the development of a generic analytical method challenging. A better analytical method that combines comprehensive coverage and high sensitivity is needed to enable us to gain a deeper understanding of the biochemistry of these molecules in health and disease. In this study, we developed a fast and comprehensive targeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for profiling SLs. The platform enables analyses of 260 metabolites covering oxylipins (isoprostanes, prostaglandins and other oxidized lipids), free fatty acids, lysophospholipids, sphingoid bases (C16, C18), platelet activating factors (C16, C18), endocannabinoids and bile acids. Various validation parameters including linearity, limit of detection, limit of quantification, extraction recovery, matrix effect, intra-day and inter-day precision were used to characterize this method. Metabolite quantitation was successfully achieved in both NIST Standard Reference Material for human plasma (NIST SRM 1950) and pooled human plasma, with 109 and 144 metabolites quantitated. The quantitation results in NIST SRM 1950 plasma demonstrated good correlations with certified or previously reported values in published literature. This study introduced quantitative data for 37 SLs for the first time. Metabolite concentrations measured in NIST SRM 1950 will serve as essential reference data for facilitating interlaboratory comparisons. The methodology established here will be the cornerstone for in-depth profiling of signaling lipids across diverse biological samples and contexts.


Subject(s)
Inflammation , Tandem Mass Spectrometry , Humans , Chromatography, High Pressure Liquid , Oxidative Stress , Endocannabinoids
2.
Cell Rep Med ; 5(2): 101387, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38262411

ABSTRACT

Cold exposure activates brown adipose tissue (BAT) and potentially improves cardiometabolic health through the secretion of signaling lipids by BAT. Here, we show that 2 h of cold exposure in young adults increases the levels of omega-6 and omega-3 oxylipins, the endocannabinoids (eCBs) anandamide and docosahexaenoylethanolamine, and lysophospholipids containing polyunsaturated fatty acids. Contrarily, it decreases the levels of the eCBs 1-LG and 2-LG and 1-OG and 2-OG, lysophosphatidic acids, and lysophosphatidylethanolamines. Participants overweight or obese show smaller increases in omega-6 and omega-3 oxylipins levels compared to normal weight. We observe that only a small proportion (∼4% on average) of the cold-induced changes in the plasma signaling lipids are slightly correlated with BAT volume. However, cold-induced changes in omega-6 and omega-3 oxylipins are negatively correlated with adiposity, glucose homeostasis, lipid profile, and liver parameters. Lastly, a 24-week exercise-based randomized controlled trial does not modify plasma signaling lipid response to cold exposure.


Subject(s)
Cardiovascular Diseases , Fatty Acids, Omega-3 , Young Adult , Humans , Adipose Tissue, Brown , Oxylipins , Obesity
3.
J Clin Endocrinol Metab ; 109(5): 1351-1360, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-37967236

ABSTRACT

CONTEXT: The endocannabinoid system (ECS) is a signaling system composed of endocannabinoids (eCBs), their receptors, and the enzymes involved in their synthesis and metabolism. Alterations in the ECS are linked to the development of cardiometabolic diseases. OBJECTIVE: Here, we investigated the relationship between plasma levels of eCBs and their analogues with body composition and cardiometabolic risk factors. METHODS: The study included 133 young adults (age 22.1 ± 2.2 years, 67% women). Fasting plasma levels of eCBs and their analogues were measured using liquid chromatography-tandem mass spectrometry. Body composition, brown adipose tissue (BAT) volume, glucose uptake, and traditional cardiometabolic risk factors were measured. RESULTS: Plasma levels of eCBs and several eCB analogues were positively correlated with adiposity and traditional cardiometabolic risk factors (eg, serum insulin and triacylglyceride levels, all r ≥ 0.17 and P ≤ .045). Plasma levels of 2-arachidonoyl glycerol and N-pentadecenoylethanolamine were negatively correlated with BAT volume and glucose uptake (all r ≤ -0.17 and P ≤ .047). We observed that the plasma levels of eCBs and their analogues were higher in metabolically unhealthy overweight-obese participants than in metabolically healthy overweight-obese participants. CONCLUSION: Our findings show that the plasma levels of eCBs and their analogues are related to higher levels of adiposity and worse cardiometabolic profile.

4.
Nat Commun ; 14(1): 8039, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052772

ABSTRACT

Monoacylglycerol lipase (MAGL) regulates endocannabinoid 2-arachidonoylglycerol (2-AG) and eicosanoid signalling. MAGL inhibition provides therapeutic opportunities but clinical potential is limited by central nervous system (CNS)-mediated side effects. Here, we report the discovery of LEI-515, a peripherally restricted, reversible MAGL inhibitor, using high throughput screening and a medicinal chemistry programme. LEI-515 increased 2-AG levels in peripheral organs, but not mouse brain. LEI-515 attenuated liver necrosis, oxidative stress and inflammation in a CCl4-induced acute liver injury model. LEI-515 suppressed chemotherapy-induced neuropathic nociception in mice without inducing cardinal signs of CB1 activation. Antinociceptive efficacy of LEI-515 was blocked by CB2, but not CB1, antagonists. The CB1 antagonist rimonabant precipitated signs of physical dependence in mice treated chronically with a global MAGL inhibitor (JZL184), and an orthosteric cannabinoid agonist (WIN55,212-2), but not with LEI-515. Our data support targeting peripheral MAGL as a promising therapeutic strategy for developing safe and effective anti-inflammatory and analgesic agents.


Subject(s)
Monoacylglycerol Lipases , Monoglycerides , Animals , Mice , Rimonabant , Endocannabinoids , Analgesics/pharmacology , Receptor, Cannabinoid, CB1 , Mice, Inbred C57BL
5.
Scand J Med Sci Sports ; 33(9): 1607-1620, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37278109

ABSTRACT

Circulating bile acids (BA) are signaling molecules that control glucose and lipid metabolism. However, the effects of acute exercise on plasma levels of BA in humans remain poorly understood. Here, we evaluate the effects of a bout of maximal endurance exercise (EE) and resistance exercise (RE) on plasma levels of BA in young, sedentary adults. Concentration of eight plasma BA was measured by liquid chromatography-tandem mass spectrometry before and 3, 30, 60, and 120 min after each exercise bout. Cardiorespiratory fitness (CRF) was assessed in 14 young adults (21.8 ± 2.5 yo, 12 women); muscle strength was assessed in 17 young adults (22.4 ± 2.5 yo, 11 women). EE transiently decreased plasma levels of total, primary, and secondary BA at 3 and 30 min after exercise. RE exerted a prolonged reduction in plasma levels of secondary BA (p < 0.001) that lasted until 120 min. Primary BA levels of cholic acid (CA) and chenodeoxycholic acid (CDCA) were different across individuals with low/high CRF levels after EE (p ≤ 0.044); CA levels were different across individuals with low/high handgrip strength levels. High CRF individuals presented higher levels of CA and CDCA 120 min after exercise vs baseline (+77% and +65%) vs the low CRF group (-5% and -39%). High handgrip strength levels individuals presented higher levels of CA 120 min after exercise versus baseline (+63%) versus the low handgrip strength group (+6%). The study findings indicate that an individual's level of physical fitness can influence how circulating BA respond to both endurance and resistance exercise. Additionally, the study suggests that changes in plasma BA levels after exercising could be related to the control of glucose homeostasis in humans.


Subject(s)
Bile Acids and Salts , Resistance Training , Young Adult , Humans , Female , Hand Strength , Exercise , Glucose
6.
Metabolomics ; 19(6): 54, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37278866

ABSTRACT

BACKGROUND: Gut bacteria play a crucial role in the metabolism of bile acids (BA). Whether an association exists between the fecal microbiota composition and circulating BA levels in humans is poorly understood. Here, we investigated the relationship between fecal microbiota diversity and composition with plasma levels of BA in young adults. METHODS: Fecal microbiota diversity/composition was analyzed with 16S rRNA sequencing in 80 young adults (74% women; 21.9 ± 2.2 years old). Plasma levels of BA were measured using liquid chromatography-tandem mass spectrometry. PERMANOVA and Spearman correlation analyses were used to investigate the association between fecal microbiota parameters and plasma levels of BA. RESULTS: Fecal microbiota beta (P = 0.025) and alpha diversity indexes of evenness (rho = 0.237, P = 0.033), Shannon (rho = 0.313, P = 0.004), and inverse Simpson (rho = 0.283, P = 0.010) were positively associated with plasma levels of the secondary BA glycolithocholic acid (GLCA). The relative abundance of genera belonging to the Firmicutes and Bacteroidetes phyla was positively correlated with plasma levels of GLCA (all rho ≥ 0.225, P ≤ 0.049). However, the relative abundance of species from Firmicutes and Bacteroidetes phyla were negatively correlated with plasma levels of primary and secondary BA (all rho ≤ - 0.220, P ≤ 0.045), except for the relative abundance of Bacteroides vulgatus, Alistipes onderdonkii, and Bacteroides xylanisolvens species (Bacteroidetes phylum) that were positively correlated with the plasma levels of GLCA. CONCLUSIONS: The relative abundance of specific fecal bacteria species is associated with plasma levels of BA in young adults. However, further investigations are required to validate whether the composition of the gut microbiota can regulate the plasma concentrations of BA in humans.


Subject(s)
Bile Acids and Salts , Firmicutes , Humans , Female , Young Adult , Adult , Male , Firmicutes/genetics , RNA, Ribosomal, 16S/genetics , Metabolomics , Bacteria/genetics , Bacteroidetes/genetics
7.
J Nutr Biochem ; 117: 109331, 2023 07.
Article in English | MEDLINE | ID: mdl-36967095

ABSTRACT

Omega-6 and omega-3 oxylipins may be surrogate markers of systemic inflammation, which is one of the triggers for the development of cardiometabolic disorders. In the current study, we investigated the relationship between plasma levels of omega-6 and omega-3 oxylipins with body composition and cardiometabolic risk factors in middle-aged adults. Seventy-two 72 middle-aged adults (39 women; 53.6±5.1 years old; 26.7±3.8 kg/m2) were included in this cross-sectional study. Plasma levels of omega-6 and omega-3 fatty acids and oxylipins were determined using targeted lipidomic. Body composition, dietary intake, and cardiometabolic risk factors were assessed with standard methods. The plasma levels of the omega-6 fatty acids and derived oxylipins, the hydroxyeicosatetraenoic acids (HETEs; arachidonic acid (AA)-derived oxylipins) and dihydroxy-eicosatrienoic acids (DiHETrEs; AA-derived oxylipins), were positively associated with glucose metabolism parameters (i.e., insulin levels and homeostatic model assessment of insulin resistance index (HOMA); all r≥0.21, P<.05). In contrast, plasma levels of omega-3 fatty acids and derived oxylipins, specifically hydroxyeicosapentaenoic acids (HEPEs; eicosapentaenoic acid-derived oxylipins), as well as series-3 prostaglandins, were negatively associated with plasma glucose metabolism parameters (i.e., insulin levels, HOMA; all r≤0.20, P<.05). The plasma levels of omega-6 fatty acids and derived oxylipins, HETEs and DiHETrEs were also positively correlated with liver function parameters (i.e., glutamic pyruvic transaminase, gamma-glutamyl transferase (GGT), and fatty liver index; all r≥0.22 and P<.05). In addition, individuals with higher omega-6/omega-3 fatty acid and oxylipin ratio showed higher levels of HOMA, total cholesterol, low-density lipoprotein-cholesterol, triglycerides, and GGT (on average +36%), as well as lower levels of high-density lipoprotein cholesterol (-13%) (all P<.05). In conclusion, the omega-6/omega-3 fatty acid and oxylipin ratio, as well as specific omega-6 and omega-3 oxylipins plasma levels, reflect an adverse cardiometabolic profile in terms of higher insulin resistance and impaired liver function in middle-aged adults.


Subject(s)
Cardiovascular Diseases , Fatty Acids, Omega-3 , Insulin Resistance , Middle Aged , Adult , Humans , Female , Oxylipins/metabolism , Fatty Acids, Omega-6 , Cross-Sectional Studies , Arachidonic Acid , Insulin , Cholesterol , Cardiovascular Diseases/etiology
8.
Nutrients ; 14(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36501021

ABSTRACT

Pre-clinical studies suggest that circulating oxylipins, i.e., the oxidation products of polyunsaturated fatty acids (PUFAs), modulate gut microbiota composition in mice, but there is no information available in humans. Therefore, this study aimed to investigate the relationship between omega-3 and omega-6 derived oxylipins plasma levels and fecal microbiota composition in a cohort of young adults. 80 young adults (74% women; 21.9 ± 2.2 years old) were included in this cross-sectional study. Plasma levels of oxylipins were measured using liquid chromatography-tandem mass spectrometry. Fecal microbiota composition was analyzed by V3-V4 16S rRNA gene sequencing. We observed that plasma levels of omega-3 derived oxylipins were positively associated with the relative abundance of Clostridium cluster IV genus (Firmicutes phylum; rho ≥ 0.415, p ≤ 0.009) and negatively associated with the relative abundance of Sutterella genus (Proteobacteria phylum; rho ≥ -0.270, p ≤ 0.041), respectively. Moreover, plasma levels of omega-6 derived oxylipins were negatively associated with the relative abundance of Acidaminococcus and Phascolarctobacterium genera (Firmicutes phylum; all rho ≥ -0.263, p ≤ 0.024), as well as Sutterella, Succinivibrio, and Gemmiger genera (Proteobacteria phylum; all rho ≥ -0.263, p ≤ 0.024). Lastly, the ratio between omega-6 and omega-3 oxylipins plasma levels was negatively associated with the relative abundance of Clostridium cluster IV genus (Firmicutes phylum; rho = -0.334, p = 0.004) and Butyricimonas genus (Bacteroidetes phylum; rho = -0.292, p = 0.014). In conclusion, our results show that the plasma levels of omega-3 and omega-6 derived oxylipins are associated with the relative abundance of specific fecal bacteria genera.


Subject(s)
Fatty Acids, Omega-3 , Microbiota , Young Adult , Humans , Female , Mice , Animals , Adult , Male , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , Cross-Sectional Studies , Oxylipins , Feces/microbiology , Firmicutes/genetics , Bacteroidetes/genetics , Proteobacteria/genetics , Fatty Acids, Omega-3/analysis
9.
EBioMedicine ; 85: 104313, 2022 11.
Article in English | MEDLINE | ID: mdl-36374769

ABSTRACT

BACKGROUND: Fatty acid-derived lipid mediators including oxylipins, endocannabinoids (eCBs), and their analogues, have emerged as key metabolites in the inflammatory and immune response to physiological stressors. METHODS: This report was based on a sub-study and secondary analyses the ACTIBATE single-center unblinded randomized controlled trial (ClinicalTrials.gov ID: NCT02365129). The study was performed in the Sport and Health University Research Institute and the Virgen de las Nieves University Hospital of the University of Granada. Eligible participants were young, sedentary adults with no chronic diseases. Here, we performed both an acute endurance and resistance exercise sub-studies (n.ß=.ß14 and 17 respectively), and a 24-week supervised exercise intervention, combining endurance and resistance exercise training at moderate-intensity (MOD-EX) or vigorous-intensity (VIG-EX) exercise groups, in young sedentary adults. Randomization was performed by unrestricted randomization. Plasma levels of oxylipins, eCBs, and their analogues were measured using liquid chromatography-tandem mass spectrometry. FINDINGS: Both endurance and resistance exercise increased by.ß+50% the plasma levels of dihomo-..-linolenic acid and arachidonic acid (AA) omega-6 derived oxylipins, as well as eicosapentaenoic acid and docosahexaenoic acid omega-3 derived after 3 and 120.ßmin of the bout of exercise (all ..2.ß....ß0.219 and P.ß..±.ß0.039). These exercise modalities also increased the levels of anandamide and eCBs analogues (+25%). 145 young sedentary adults were assigned to a control (CON, n.ß=.ß54), a MOD-EX (n.ß=.ß48) or a VIG-EX (n.ß=.ß43). 102 participants were included in the final long-term analyses (CON, n.ß=.ß36; MOD-EX, n.ß=.ß33; and VIG-EX, n.ß=.ß33) of the trial. After 24-week of supervised exercise, MOD-EX decreased plasma levels of omega-6 oxylipins, concretely linoleic acid (LA) and adrenic acid derived oxylipins, and the eCBs analogues OEA and LEA in comparison to the CON (all P.ß..±.ß0.021). VIG-EX decreased LA-derived oxylipins and LEA compared to CON. No relevant adverse events were recorded. INTERPRETATION: Endurance and resistance exercises acutely increased plasma levels of oxylipins, eCBs, and their analogues, whereas 24 weeks of exercise training decreased fasting plasma levels of omega-6 oxylipins, and eCBs analogues in young, sedentary adults. FUNDING: See Acknowledgments section.


Subject(s)
Endocannabinoids , Oxylipins , Humans , Adult , Oxylipins/metabolism , Eicosapentaenoic Acid , Docosahexaenoic Acids , Exercise
10.
Exp Gerontol ; 169: 111954, 2022 11.
Article in English | MEDLINE | ID: mdl-36122595

ABSTRACT

INTRODUCTION: Vitamin D - concretely its active form 1,25-dihydroxyvitamin D (1,25(OH)2D) - maintains several physiological processes. Oxylipins are oxidized lipids derived from ω-6 and ω-3 polyunsaturated fatty acids involved in inflammation. Little is known about the association of 1,25(OH)2D with inflammatory parameters in middle-aged populations - who could be at risk of vitamin D deficiency -. The aim of this study was to investigate the relationship between 1,25(OH)2D plasma levels with circulating white blood cells, platelets counts and oxylipins levels. MATERIALS AND METHODS: A total of 74 (53 % women) middle-aged (40-65 years old) adults were recruited for this cross-sectional study. 1,25(OH)2D plasma levels were measured using an immunochemiluminometric assay. White blood cells and platelets were analyzed by hemocytometry. ω-6 and ω-3 oxylipins plasma levels were measured using liquid chromatography - tandem mass spectrometry. Simple and multiple linear regression models, and Pearson correlation analyses, were performed to study the association of 1,25(OH)2D levels with WBC and platelets counts, and oxylipins, respectively. RESULTS: 1,25(OH)2D plasma levels were positively related with linoleic acid-derived oxylipins and isoprostanes plasma levels, whereas an inverse relationship with dihomo-γ-linolenic acid/linoleic acid and arachidonic acid/linoleic acid ratios was unveiled. No significant associations were observed for circulating ω-3 oxylipins, white blood cells levels or platelets count. CONCLUSIONS: Linoleic acid-derived oxylipins and isoprostanes plasma levels may be influenced by 1,25(OH)2D plasma levels. Further investigations are needed to elucidate the impact of other vitamin D forms upon circulating oxylipins levels.


Subject(s)
Fatty Acids, Omega-3 , Oxylipins , Humans , Female , Middle Aged , Aged , Male , Linoleic Acid , Isoprostanes , Cross-Sectional Studies , Vitamin D
11.
Nutrients ; 14(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35631284

ABSTRACT

OBJECTIVE: To investigate the association of plasma levels of endocannabinoids with fecal microbiota. METHODS: Plasma levels of endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), as well as their eleven analogues, and arachidonic acid (AA), were measured using liquid chromatography-tandem mass spectrometry in 92 young adults. DNA extracted from stool samples was analyzed using 16S rRNA gene sequencing. Lipopolysaccharide levels were measured in plasma samples. RESULTS: Plasma levels of endocannabinoids and their analogues were not related to beta or alpha diversity indexes. Plasma levels of AEA and related N-acylethanolamines correlated positively with the relative abundance of Faecalibacterium genus (all rho ≥ 0.26, p ≤ 0.012) and Akkermansia genus (all rho ≥ 0.22, p ≤ 0.036), and negatively with the relative abundance of Bilophila genus (all rho ≤ -0.23, p ≤ 0.031). Moreover, plasma levels of 2-AG and other acylglycerols correlated positively with the relative abundance of Parasutterella (all rho ≥ 0.24, p ≤ 0.020) and Odoribacter genera (all rho ≥ 0.27, p ≤ 0.011), and negatively with the relative abundance of Prevotella genus (all rho ≤ -0.24, p ≤ 0.023). In participants with high lipopolysaccharide values, the plasma levels of AEA and related N-acylethanolamines, as well as AA and 2-AG, were negatively correlated with plasma levels of lipopolysaccharide (all rho ≤ -0.24, p ≤ 0.020). CONCLUSION: Plasma levels of endocannabinoids and their analogues are correlated to specific fecal bacterial genera involved in maintaining gut barrier integrity in young adults. This suggests that plasma levels of endocannabinoids and their analogues may play a role in the gut barrier integrity in young adults.


Subject(s)
Endocannabinoids , Gastrointestinal Microbiome , Bacteria/genetics , Feces/microbiology , Humans , Lipopolysaccharides , RNA, Ribosomal, 16S/genetics , Young Adult
12.
Anal Chim Acta ; 1210: 339888, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35595362

ABSTRACT

The endocannabinoid system (ECS) is implicated in various brain disorders. Changes in the composition of the cerebrospinal fluid (CSF) may be associated with ECS-related pathologies. Endocannabinoids (eCBs) and their analogues are present at low concentrations in human CSF, which hampered the investigation of the ECS in this body fluid. In this study, we developed a highly sensitive and selective micro-flow liquid chromatography-tandem mass spectrometry (micro-LC-MS/MS) method for the analysis of eCBs and eCB analogues in human CSF. The developed method allowed for the quantitative analysis of 16 eCBs and their analogues in human CSF. Micro-LC-MS/MS analyses were performed at a flow-rate of 4 µL min-1 with a 0.3-mm inner diameter column. A minor modification of a novel spray needle was carried out to improve the robustness of our method. By using an injection volume of 3 µL, our method reached limits of detection in the range from 0.6 to 1293.4 pM and limits of quantification in range from 2.0 to 4311.3 pM while intra- and interday precisions were below 13.7%. The developed workflow was successfully used for the determination of eCBs in 288 human CSF samples. It is anticipated that the proposed approach will contribute to a deeper understanding of the role of ECS in various brain disorders.


Subject(s)
Brain Diseases , Endocannabinoids , Chromatography, High Pressure Liquid , Chromatography, Liquid/methods , Humans , Reproducibility of Results , Tandem Mass Spectrometry/methods
13.
Int J Sport Nutr Exerc Metab ; 32(4): 275-284, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35339112

ABSTRACT

This study aimed to investigate the effects of different exercise training programs on fasting plasma levels of oxylipins, endocannabinoids (eCBs), and eCBs-like molecules in middle-aged sedentary adults. A 12-week randomized controlled trial was conducted using a parallel group design. Sixty-five middle-aged adults (40-65 years old) were randomly assigned to: (a) no exercise (control group), (b) concurrent training based on international physical activity recommendations (PAR group), (c) high-intensity interval training (HIIT group), and (d) HIIT together with whole-body electromyostimulation (HIIT + EMS group). Plasma levels of oxylipins, eCBs, and eCBs-like molecules were determined in plasma samples before and after the intervention using targeted lipidomics. Body composition was assessed through dual-energy X-ray absorptiometry, and dietary intake through a food frequency questionnaire and three nonconsecutive 24-hr recalls. The physical activity recommendations, HIIT, and HIIT-EMS groups showed decreased plasma levels of omega-6 and omega-3-derived oxylipins, and eCBs and eCBs-like molecules after 12 weeks (all Δ ≤ -0.12; all p < .05). Importantly, after Bonferroni post hoc corrections, the differences in plasma levels of omega-6 and omega-3 oxylipins were not statistically significant compared with the control group (all p > .05). However, after post hoc corrections, plasma levels of anandamide and oleoylethanolamide were increased in the physical activity recommendations group compared with the control group (anandamide: Δ = 0.05 vs. -0.09; oleoylethanolamide: Δ = -0.12 vs. 0.013, all p ≤ .049). In conclusion, this study reports that a 12-week exercise training intervention, independent of the modality applied, does not modify fasting plasma levels of omega-6 and omega-3 oxylipins, eCBs, and eCBs-like molecules in middle-aged sedentary adults.


Subject(s)
High-Intensity Interval Training , Oxylipins , Adult , Aged , Endocannabinoids , Exercise/physiology , Fasting , Humans , Middle Aged
14.
Obesity (Silver Spring) ; 30(1): 50-61, 2022 01.
Article in English | MEDLINE | ID: mdl-34898010

ABSTRACT

OBJECTIVE: Omega-6 and omega-3 oxylipins are known to play a role in inflammation and cardiometabolic diseases in preclinical models. The associations between plasma levels of omega-6 and omega-3 polyunsaturated fatty acid-derived oxylipins and body composition and cardiometabolic risk factors in young adults were assessed. METHODS: Body composition, brown adipose tissue, traditional serum cardiometabolic risk factors, inflammatory markers, and a panel of 83 oxylipins were analyzed in 133 young adults (age 22.1[SD 2.2] years, 67% women). RESULTS: Plasma levels of four omega-6 oxylipins (15-HeTrE, 5-HETE, 14,15-EpETrE, and the oxidative stress-derived 8,12-iso-iPF2α -VI) correlated positively with adiposity, prevalence of metabolic syndrome, fatty liver index, and homeostatic model assessment of insulin resistance index and lipid parameters. By contrast, the plasma levels of three omega-3 oxylipins (14,15-DiHETE, 17,18-DiHETE, and 19,20-DiHDPA) were negatively correlated with adiposity, prevalence of metabolic syndrome, fatty liver index, homeostatic model assessment of insulin resistance index, and lipid parameters. The panel of seven oxylipins predicted adiposity better than traditional inflammatory markers such as interferon gamma or tumor necrosis factor-alpha. Pathway analyses revealed that individuals with obesity had higher plasma levels of omega-6 and lower plasma levels of omega-3 oxylipins than normal-weight individuals. CONCLUSION: Plasma levels of seven omega-6 and omega-3 oxylipins may have utility as early markers of cardiometabolic risk in young adults.


Subject(s)
Cardiovascular Diseases , Fatty Acids, Omega-3 , Adiposity , Adult , Biomarkers , Cardiovascular Diseases/epidemiology , Female , Humans , Male , Oxylipins , Young Adult
15.
J Clin Endocrinol Metab ; 107(3): 715-723, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34718617

ABSTRACT

CONTEXT: Bile acids (BA) are known for their role in intestinal lipid absorption and can also play a role as signaling molecules to control energy metabolism. Prior evidence suggests that alterations in circulating BA levels and in the pool of circulating BA are linked to an increased risk of obesity and a higher incidence of type 2 diabetes in middle-aged adults. OBJECTIVE: We aimed to investigate the association between plasma levels of BA with cardiometabolic risk factors in a cohort of well-phenotyped, relatively healthy young adults. METHODS: Body composition, brown adipose tissue, serum classical cardiometabolic risk factors, and a set of 8 plasma BA (including glyco-conjugated forms) in 136 young adults (age 22.1 ± 2.2 years, 67% women) were measured. RESULTS: Plasma levels of chenodeoxycholic acid (CDCA) and glycoursodeoxycholic acid (GUDCA) were higher in men than in women, although these differences disappeared after adjusting for body fat percentage. Furthermore, cholic acid (CA), CDCA, deoxycholic acid (DCA), and glycodeoxycholic acid (GDCA) levels were positively, yet weakly associated, with lean body mass (LBM) levels, while GDCA and glycolithocholic acid (GLCA) levels were negatively associated with 18F-fluorodeoxyglucose uptake by brown adipose tissue. Interestingly, glycocholic acid (GCA), glycochenodeoxycholic acid (GCDCA), and GUDCA were positively associated with glucose and insulin serum levels, HOMA index, low-density lipoprotein cholesterol, tumor necrosis factor alpha, interleukin (IL)-2, and IL-8 levels, but negatively associated with high-density lipoprotein cholesterol, ApoA1, and adiponectin levels, yet these significant correlations partially disappeared after the inclusion of LBM as a confounder. CONCLUSION: Our findings indicate that plasma levels of BA might be sex dependent and are associated with cardiometabolic and inflammatory risk factors in young and relatively healthy adults.


Subject(s)
Bile Acids and Salts/blood , Adiposity , Body Mass Index , Cardiometabolic Risk Factors , Female , Healthy Volunteers , Humans , Male , Randomized Controlled Trials as Topic , Sex Factors , Young Adult
16.
Cardiovasc Diabetol ; 20(1): 151, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34315463

ABSTRACT

BACKGROUND: Succinate is produced by both host and microbiota, with a key role in the interplay of immunity and metabolism and an emerging role as a biomarker for inflammatory and metabolic disorders in middle-aged adults. The relationship between plasma succinate levels and cardiovascular disease (CVD) risk in young adults is unknown. METHODS: Cross-sectional study in 100 (65% women) individuals aged 18-25 years from the ACTIvating Brown Adipose Tissue through Exercise (ACTIBATE) study cohort. CVD risk factors, body composition, dietary intake, basal metabolic rate, and cardiorespiratory fitness were assessed by routine methods. Plasma succinate was measured with an enzyme-based assay. Brown adipose tissue (BAT) was evaluated by positron emission tomography, and circulating oxylipins were assessed by targeted metabolomics. Fecal microbiota composition was analyzed in a sub-sample. RESULTS: Individuals with higher succinate levels had higher levels of visceral adipose tissue (VAT) mass (+ 42.5%), triglycerides (+ 63.9%), C-reactive protein (+ 124.2%), diastolic blood pressure (+ 5.5%), and pro-inflammatory omega-6 oxylipins than individuals with lower succinate levels. Succinate levels were also higher in metabolically unhealthy individuals than in healthy overweight/obese peers. Succinate levels were not associated with BAT volume or activity or with fecal microbiota composition and diversity. CONCLUSIONS: Plasma succinate levels are linked to a specific pro-inflammatory omega-6 signature pattern and higher VAT levels, and seem to reflect the cardiovascular status of young adults.


Subject(s)
Cardiovascular Diseases/blood , Succinic Acid/blood , Adiposity , Adolescent , Adult , Age Factors , Biomarkers/blood , Blood Pressure , C-Reactive Protein/analysis , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/physiopathology , Cross-Sectional Studies , Female , Gastrointestinal Microbiome , Heart Disease Risk Factors , Humans , Inflammation Mediators/blood , Intra-Abdominal Fat/physiopathology , Male , Oxylipins/blood , Randomized Controlled Trials as Topic , Risk Assessment , Triglycerides/blood , Up-Regulation , Young Adult
17.
J Med Chem ; 63(17): 9340-9359, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32787138

ABSTRACT

The phospholipase A and acyltransferase (PLAAT) family of cysteine hydrolases consists of five members, which are involved in the Ca2+-independent production of N-acylphosphatidylethanolamines (NAPEs). NAPEs are lipid precursors for bioactive N-acylethanolamines (NAEs) that are involved in various physiological processes such as food intake, pain, inflammation, stress, and anxiety. Recently, we identified α-ketoamides as the first pan-active PLAAT inhibitor scaffold that reduced arachidonic acid levels in PLAAT3-overexpressing U2OS cells and in HepG2 cells. Here, we report the structure-activity relationships of the α-ketoamide series using activity-based protein profiling. This led to the identification of LEI-301, a nanomolar potent inhibitor for the PLAAT family members. LEI-301 reduced the NAE levels, including anandamide, in cells overexpressing PLAAT2 or PLAAT5. Collectively, LEI-301 may help to dissect the physiological role of the PLAATs.


Subject(s)
Acyltransferases/antagonists & inhibitors , Amides/chemistry , Amides/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Phospholipases/antagonists & inhibitors , Acyltransferases/chemistry , Hep G2 Cells , Humans , Models, Molecular , Phospholipases/chemistry , Protein Conformation , Structure-Activity Relationship
18.
Nat Chem Biol ; 16(6): 667-675, 2020 06.
Article in English | MEDLINE | ID: mdl-32393901

ABSTRACT

N-acylethanolamines (NAEs), which include the endocannabinoid anandamide, represent an important family of signaling lipids in the brain. The lack of chemical probes that modulate NAE biosynthesis in living systems hamper the understanding of the biological role of these lipids. Using a high-throughput screen, chemical proteomics and targeted lipidomics, we report here the discovery and characterization of LEI-401 as a CNS-active N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor. LEI-401 reduced NAE levels in neuroblastoma cells and in the brain of freely moving mice, but not in NAPE-PLD KO cells and mice, respectively. LEI-401 activated the hypothalamus-pituitary-adrenal axis and impaired fear extinction, thereby emulating the effect of a cannabinoid CB1 receptor antagonist, which could be reversed by a fatty acid amide hydrolase inhibitor. Our findings highlight the distinctive role of NAPE-PLD in NAE biosynthesis in the brain and suggest the presence of an endogenous NAE tone controlling emotional behavior.


Subject(s)
Behavior, Animal/drug effects , Enzyme Inhibitors/chemistry , Lipid Metabolism/drug effects , Phosphatidylethanolamines/metabolism , Phospholipase D/antagonists & inhibitors , Amidohydrolases/metabolism , Animals , Blood Proteins/metabolism , Brain/metabolism , Cannabinoid Receptor Antagonists/metabolism , Cell Line, Tumor , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Fear/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Receptors, Cannabinoid/metabolism , Signal Transduction
19.
Pharmacol Res ; 151: 104578, 2020 01.
Article in English | MEDLINE | ID: mdl-31794870

ABSTRACT

AIM: Acute myocardial infarction and subsequent post-infarction heart failure are among the leading causes of mortality worldwide. The endocannabinoid system has emerged as an important modulator of cardiovascular disease, however the role of endocannabinoid metabolic enzymes in heart failure is still elusive. Herein, we investigated the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and non-failing controls. METHODS AND RESULTS: Quantitative real-time PCR, targeted lipidomics, and activity-based protein profiling (ABPP) enabled assessment of the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and non-failing controls. Based on lipidomic analysis, two subgroups were identified within the ischemic heart failure group; the first similar to control hearts and the second with decreased levels of the endocannabinoid 2-arachidonoyl-glycerol (2-AG) and drastically increased levels of the endocannabinoid anandamide (AEA), other N-acylethanolamines (NAEs) and free fatty acids. The altered lipid profile was accompanied by strong reductions in the activity of 13 hydrolases, including the 2-AG hydrolytic enzyme monoacylglycerol lipase (MGLL). CONCLUSIONS: Our findings suggest the presence of different biological states within the ischemic heart failure group, based on alterations in the lipid and hydrolase activity profiles. In addition, this study demonstrates that ABPP is a valuable tool to rapidly analyze enzyme activity in clinical samples with potential for novel drug and biomarker discovery.


Subject(s)
Endocannabinoids/metabolism , Heart Failure/metabolism , Hydrolases/metabolism , Myocardial Ischemia/metabolism , Adult , Female , Humans , Lipidomics , Male , Middle Aged , Myocardial Infarction/metabolism , Proteomics
20.
Front Mol Neurosci ; 12: 286, 2019.
Article in English | MEDLINE | ID: mdl-31849602

ABSTRACT

The endocannabinoid 2-arachidonoylglycerol (2-AG) is involved in neuronal differentiation. This study aimed to identify the biosynthetic enzymes responsible for 2-AG production during retinoic acid (RA)-induced neurite outgrowth of Neuro-2a cells. First, we confirmed that RA stimulation of Neuro-2a cells increases 2-AG production and neurite outgrowth. The diacylglycerol lipase (DAGL) inhibitor DH376 blocked 2-AG production and reduced neuronal differentiation. Surprisingly, CRISPR/Cas9-mediated knockdown of DAGLα and DAGLß in Neuro-2a cells did not reduce 2-AG levels, suggesting another enzyme capable of producing 2-AG in this cell line. Chemical proteomics revealed DAGLß and α,ß-hydrolase domain containing protein (ABHD6) as the only targets of DH376 in Neuro-2a cells. Biochemical, genetic and lipidomic studies demonstrated that ABHD6 possesses DAGL activity in conjunction with its previously reported monoacylglycerol lipase activity. RA treatment of Neuro-2a cells increased by three-fold the amount of active ABHD6. Our study shows that ABHD6 exhibits significant DAG lipase activity in Neuro-2a cells in addition to its known MAG lipase activity and suggest it is involved in neuronal differentiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...