Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 23(24): 25364-25373, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27696168

ABSTRACT

The aquatic environment is affected by heavy metal pollution. This study was conducted to test the hypothesis that environmental factors and anthropogenic activities influence the distributions and the risks posed by heavy metals in surface sediments in shallow lakes in eastern China, which is an area affected by rapid urbanization, industrialization, and population growth. Total Cd, Cr, Cu, Ni, Pb, Se, and Zn concentrations in sediment samples were determined using inductively coupled plasma optical emission spectrometry. The I geo showed that sediments in the lakes were moderately polluted with Cr, Cu, Pb, and Zn, and the EF method showed that Cd and Se were significantly enriched in lakes. The heavy metals were found to pose moderate risks in most of the lakes, except for Gaoyou Lake, Honghu Lake, Poyang Lake, and Weishan Lake. The RI method indicated that very high risks were posed in Dongting Lake and Poyang Lake. Cd was found to pose much higher levels of risk than the other metals. Significant correlations were found between the heavy metal concentrations and the total carbon, nitrogen, phosphorus, and sulfur concentrations. The gross domestic product represented anthropogenic activities well. The gross domestic product of an area and the gross domestic products of primary and secondary industries in an area all had significant relationships with the concentrations of Cu and Pb, indicating that anthropogenic activities have different impacts on pollution with different heavy metals. The gross domestic product index was found to be a driving force behind the pollution of lakes with heavy metals.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Lakes/chemistry , Metals, Heavy/chemistry , Water Pollutants, Chemical/chemistry , Carbon/analysis , China , Human Activities , Humans , Phosphorus/analysis , Risk Assessment
2.
J Integr Plant Biol ; 57(7): 653-60, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25370532

ABSTRACT

The combined effects of elevated CO2 and cadmium (Cd) on photosynthetic rate, chlorophyll fluorescence and Cd accumulation in hyperaccumulator Sedum alfredii Hance were investigated to predict plant growth under Cd stress with rising atmospheric CO2 concentration. Both pot and hydroponic experiments were conducted and the plants were grown under ambient (350 µL L(-1)) or elevated (800 µL L(-1)) CO2 . Elevated CO2 significantly (P < 0.05) increased Pn (105%-149%), Pnmax (38.8%-63.0%) and AQY (20.0%-34.8%) of S. alfredii in all the Cd treatments, but reduced chlorophyll concentration, dark respiration and photorespiration. After 10 days growth in medium with 50 µM Cd under elevated CO2 , PSII activities were significantly enhanced (P < 0.05) with Pm, Fv/Fm, Φ(II) and qP increased by 66.1%, 7.5%, 19.5% and 16.4%, respectively, as compared with ambient-grown plants. Total Cd uptake in shoot of S. alfredii grown under elevated CO2 was increased by 44.1%-48.5%, which was positively correlated with the increase in Pn. These results indicate that elevated CO2 promoted the growth of S. alfredii due to increased photosynthetic carbon uptake rate and photosynthetic light-use efficiency, and showed great potential to improve the phytoextraction of Cd by S. alfredii.


Subject(s)
Cadmium/toxicity , Carbon Dioxide/pharmacology , Photosynthesis/drug effects , Sedum/physiology , Stress, Physiological/drug effects , Biomass , Chlorophyll/metabolism , Fluorescence , Gases/metabolism , Light , Photosynthesis/radiation effects , Photosystem II Protein Complex/metabolism , Plant Shoots/drug effects , Plant Shoots/metabolism , Plant Shoots/radiation effects , Plant Transpiration/drug effects , Plant Transpiration/radiation effects , Sedum/drug effects , Sedum/radiation effects
3.
J Hazard Mater ; 192(3): 1616-22, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21782330

ABSTRACT

Pot experiments were conducted to investigate the changes of the dissolved organic matter (DOM) in the rhizosphere of hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii and its effects on Zn and Cd sorption by soils. After planted with HE, soil pH in the rhizosphere reduced by 0.5-0.6 units which is consistent with the increase of DOM. The hydrophilic fractions (51%) in DOM from the rhizosphere of HE (HE-DOM) was much greater than NHE-DOM (35%). In the presence of HE-DOM, Zn and Cd sorption capacity decreased markedly in the following order: calcareous clay loam>neutral clay loam>acidic silty clay. The sorption isotherms could be well described by the Freundlich equation (R(2)>0.95), and the partition coefficient (K) in the presence of HE-DOM was decreased by 30.7-68.8% for Zn and 20.3-59.2% for Cd, as compared to NHE-DOM. An increase in HE-DOM concentration significantly reduced the sorption and increased the desorption of Zn and Cd by three soils. DOM derived from the rhizosphere of the hyperaccumulating ecotype of S. alfredii could significantly reduce metal sorption and increase its mobility through the formation of soluble DOM-metal complexes.


Subject(s)
Cadmium/chemistry , Rhizosphere , Sedum/drug effects , Soil Pollutants/analysis , Zinc/chemistry , Adsorption , Biomass , China , Dose-Response Relationship, Drug , Hydrogen-Ion Concentration , Metals/chemistry , Soil/chemistry
4.
J Hazard Mater ; 185(2-3): 818-23, 2011 Jan 30.
Article in English | MEDLINE | ID: mdl-20970251

ABSTRACT

A hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii were grown in a pot experiment to investigate the chemical characteristics of the rhizosphere. The results indicated that HE accumulated more Zn in the shoot than NHE after growing in both heavily and slightly polluted soil. The water soluble Zn and mobile Zn (extractable with 1M NH(4)NO(3)) fraction in both rhizosphere and bulk soils decreased considerably after growth of HE compared to NHE. However, the decreases in mobile fraction accounted for less than 8.5% of the total Zn uptake by HE indicating that HE was effective in mobilizing Zn from the non-mobile fractions. Zinc-induced root exudates reduced the soil pH (by 0.6-0.8 units) and increased dissolved organic carbon concentrations in the rhizosphere of HE compared to the bulk soil. The dissolved organic matter (DOM) from the rhizosphere of HE showed greater (1.7-2.5 times) extracting ability of Zn from various Zn minerals than those of NHE-DOM (P<0.05). Results from this study suggests that rhizosphere acidification and the exudation of high amounts of DOM with great metal extracting ability might be two important mechanisms by which HE S. alfredii is involved in activating metal in the rhizosphere.


Subject(s)
Sedum/metabolism , Zinc/metabolism , Biomass , Hydrogen-Ion Concentration , Plant Roots/metabolism , Sedum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL