Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Future Virol ; 2023 Mar.
Article in English | MEDLINE | ID: mdl-37064326

ABSTRACT

Aim: This study aimed to analyze the phylogenetic relationships between the ACE2 of humans and other animals and investigate the potential interaction between SARS-CoV-2 RBD and ACE2 of different species. Materials & methods: The phylogenetic construction and molecular interactions were assessed using computational models. Results & conclusion: Despite the evolutionary distance, 11 species had a perfect fit for the interaction between their ACE2 and SARS-CoV-2 RBD (Chinchilla lanigera, Neovison vison, Rhinolophus sinicus, Emballonura alecto, Saccopteryx bilineata, Numida meleagris). Among them, the avian N. meleagris was reported for the first time in this study as a probable SARS-CoV-2 host due to the strong molecular interactions. Therefore, predicting potential hosts for SARS-CoV-2 for understanding the epidemiological cycle and proposal of surveillance strategies.


Here, computational analysis was employed to predict the interaction between the Spike protein from SARS-COV-2 with the ACE2 receptor with animals that could serve as a reservoir for SARS-CoV-2 spillover. Our results reported for the first time that N. meleagris could act as a possible host for SARS-CoV-2.

2.
Antonie Van Leeuwenhoek ; 116(5): 447-462, 2023 May.
Article in English | MEDLINE | ID: mdl-36841923

ABSTRACT

Freshwater cetaceans play a significant role as sentinel animals, providing important data on animal species and aquatic ecosystem health. They also may serve as potential reservoirs of emerging pathogens and host virulence genes in their microbiota. In this study, we evaluated virulence factors produced by Gram-negative bacteria recovered from individuals belonging to two populations of free-ranging Amazon river dolphins (Inia geoffrensis). A total of 132 isolates recovered from the oral cavity, blowhole, genital opening and rectum of 21 river dolphins, 13 from Negro River and 8 from Tapajós River, Brazil, were evaluated for the production of virulence factors, such as biofilms and exoproducts (proteases, hemolysins and siderophores), in planktonic and biofilm forms. In planktonic form, 81.1% (107/132) of the tested bacteria of free-ranging Amazon river dolphins were able to produce virulence factors, with 44/132 (33.4%), 65/132 (49,2%) and 54/132 (40,9%) positive for protease, hemolysin and siderophore production, respectively. Overall, 57/132 (43.2%) of the isolates produced biofilms and, under this form of growth, 66/132 (50%), 88/132 (66.7%) and 80/132 (60.6%) of the isolates were positive for protease, hemolysin and siderophore production. In general, the isolates showed a higher release of exoproducts in biofilm than in planktonic form (P < 0.001). The present findings show that Amazon river dolphins harbor potentially pathogenic bacteria in their microbiota, highlighting the importance of monitoring the micro-organisms from wild animals, as they may emerge as pathogens for humans and other animals.


Subject(s)
Dolphins , Humans , Animals , Virulence Factors/genetics , Ecosystem , Hemolysin Proteins , Siderophores , Gram-Negative Bacteria , Peptide Hydrolases
3.
Ecohealth ; 18(3): 383-396, 2021 09.
Article in English | MEDLINE | ID: mdl-34709509

ABSTRACT

Studies on the microbiota of freshwater cetaceans are scarce and may provide important data on animal and environmental health. This study aimed to evaluate the antimicrobial susceptibility of Gram-negative bacteria recovered from two populations of free-ranging Amazon river dolphins (Inia geoffrensis). Twenty-one animals were captured and released, 13 from Negro River and 8 from Tapajós River, Brazil. Swab samples were obtained from the oral cavity, blowhole, genital opening and rectum and were cultured on MacConkey agar. Isolates were biochemically identified, and antimicrobial susceptibility was assessed by disk diffusion method. Overall, 132 isolates were recovered, of which 71 were recovered from animals from Negro River and 61 from Tapajós River. The most commonly recovered bacterial species were Enterobacter cloacae, Morganella morganii, Klebsiella pneumoniae and Pseudomonas aeruginosa. Overall, 51.6% (63/122) of the isolates were not-susceptible (intermediate resistance and resistance), of which 28/122 (22.9%) were resistant to at least one antimicrobial. Cephalothin, cefuroxime and cefepime were the drugs to which more resistant and intermediate results were observed (P < 0.001). The results indicate that free-ranging Amazon river dolphins host resistant bacteria, contributing for their maintenance in the environment. This study highlights the importance of the One Health approach to monitor the emergence of antimicrobial resistance. Summary Gram-negative bacteria recovered from 21 free-ranging Amazon river dolphins (Inia geoffrensis) from the Negro River and the Tapajós River populations were evaluated for their antimicrobial susceptibility. Overall, 51.6% (63/122) of the isolates were not-susceptible (intermediate resistance and resistance), of which 28/122 (22.9%) were resistant to at least one antimicrobial. Cephalothin, cefuroxime and cefepime were the drugs to which more resistant and intermediate results were observed. Thus, free-ranging Amazon river dolphins, never treated with antimicrobials, host resistant bacteria, contributing for their maintenance in the environment and highlighting the importance of the One Health approach to monitor the emergence of antimicrobial resistance.


Subject(s)
Dolphins , One Health , Animals , Anti-Bacterial Agents/pharmacology , Bacteria , Drug Resistance, Bacterial , Microbial Sensitivity Tests
4.
Biofouling ; 36(9): 1129-1148, 2020 10.
Article in English | MEDLINE | ID: mdl-33349038

ABSTRACT

Microbial biofilms are a natural adaptation of microorganisms, typically composed of multiple microbial species, exhibiting complex community organization and cooperation. Biofilm dynamics and their complex architecture are challenging for basic analyses, including the number of viable cells, biomass accumulation, biofilm morphology, among others. The methods used to study biofilms range from in vitro techniques to complex in vivo models. However, animal welfare has become a major concern, not only in society, but also in the academic and scientific field. Thus, the pursuit for alternatives to in vivo biofilm analyses presenting characteristics that mimic in vivo conditions has become essential. In this context, the present review proposes to provide an overview of strategies to study biofilms of medical interest, with emphasis on alternatives that approximate experimental conditions to host-associated environments, such as the use of medical devices as substrata for biofilm formation, microcosm and ex vivo models.


Subject(s)
Biofilms , Animals , Biomass
SELECTION OF CITATIONS
SEARCH DETAIL