Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Commun Biol ; 7(1): 571, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750282

ABSTRACT

Digital reconstruction has been instrumental in deciphering how in vitro neuron architecture shapes information flow. Emerging approaches reconstruct neural systems as networks with the aim of understanding their organization through graph theory. Computational tools dedicated to this objective build models of nodes and edges based on key cellular features such as somata, axons, and dendrites. Fully automatic implementations of these tools are readily available, but they may also be purpose-built from specialized algorithms in the form of multi-step pipelines. Here we review software tools informing the construction of network models, spanning from noise reduction and segmentation to full network reconstruction. The scope and core specifications of each tool are explicitly defined to assist bench scientists in selecting the most suitable option for their microscopy dataset. Existing tools provide a foundation for complete network reconstruction, however more progress is needed in establishing morphological bases for directed/weighted connectivity and in software validation.


Subject(s)
Neurons , Software , Neurons/physiology , Humans , Animals , Algorithms , Nerve Net/physiology , Nerve Net/cytology , Image Processing, Computer-Assisted/methods , Models, Neurological
2.
bioRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464116

ABSTRACT

Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization - axonal growth. Emulating the chemoaffinity guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones. This simple dynamic growth mechanism, despite being solely geometry-dependent, is shown to generate axonal fiber bundles with brain-like geometry and features of complex network architecture consistent with the human brain, including lognormally distributed connectivity weights, scale-free nodal degrees, small-worldness, and modularity. We demonstrate that our model parameters can be fitted to individual connectomes, enabling connectome dimensionality reduction and comparison of parameters between groups. Our work offers an opportunity to bridge studies of axon guidance and connectome development, providing new avenues for understanding neural development from a computational perspective.

3.
Nat Commun ; 15(1): 1490, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374065

ABSTRACT

Retinol is a fat-soluble vitamin that plays an essential role in many biological processes throughout the human lifespan. Here, we perform the largest genome-wide association study (GWAS) of retinol to date in up to 22,274 participants. We identify eight common variant loci associated with retinol, as well as a rare-variant signal. An integrative gene prioritisation pipeline supports novel retinol-associated genes outside of the main retinol transport complex (RBP4:TTR) related to lipid biology, energy homoeostasis, and endocrine signalling. Genetic proxies of circulating retinol were then used to estimate causal relationships with almost 20,000 clinical phenotypes via a phenome-wide Mendelian randomisation study (MR-pheWAS). The MR-pheWAS suggests that retinol may exert causal effects on inflammation, adiposity, ocular measures, the microbiome, and MRI-derived brain phenotypes, amongst several others. Conversely, circulating retinol may be causally influenced by factors including lipids and serum creatinine. Finally, we demonstrate how a retinol polygenic score could identify individuals more likely to fall outside of the normative range of circulating retinol for a given age. In summary, this study provides a comprehensive evaluation of the genetics of circulating retinol, as well as revealing traits which should be prioritised for further investigation with respect to retinol related therapies or nutritional intervention.


Subject(s)
Genome-Wide Association Study , Vitamin A , Humans , Phenotype , Obesity , Adiposity , Mendelian Randomization Analysis/methods , Retinol-Binding Proteins, Plasma
4.
Schizophr Bull ; 50(1): 32-46, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37354489

ABSTRACT

BACKGROUND AND HYPOTHESIS: Schizophrenia is highly heritable, with a polygenic effect of many genes conferring risk. Evidence on whether cumulative risk also predicts alterations in brain morphology and function is inconsistent. This systematic review examined evidence for schizophrenia polygenic risk score (sczPRS) associations with commonly used magnetic resonance imaging (MRI) measures. We expected consistent evidence to emerge for significant sczPRS associations with variation in structure and function, specifically in frontal, temporal, and insula cortices that are commonly implicated in schizophrenia pathophysiology. STUDY DESIGN: In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched MEDLINE, Embase, and PsycINFO for peer-reviewed studies published between January 2013 and March 2022. Studies were screened against predetermined criteria and National Institutes of Health (NIH) quality assessment tools. STUDY RESULTS: In total, 57 studies of T1-weighted structural, diffusion, and functional MRI were included (age range = 9-80 years, Nrange = 64-76 644). We observed moderate, albeit preliminary, evidence for higher sczPRS predicting global reductions in cortical thickness and widespread variation in functional connectivity, and to a lesser extent, region-specific reductions in frontal and temporal volume and thickness. Conversely, sczPRS does not predict whole-brain surface area or gray/white matter volume. Limited evidence emerged for sczPRS associations with diffusion tensor measures of white matter microstructure in a large community sample and smaller cohorts of children and young adults. These findings were broadly consistent across community and clinical populations. CONCLUSIONS: Our review supports the hypothesis that schizophrenia is a disorder of disrupted within and between-region brain connectivity, and points to specific whole-brain and regional MRI metrics that may provide useful intermediate phenotypes.


Subject(s)
Schizophrenia , White Matter , Young Adult , Child , Humans , Adolescent , Adult , Middle Aged , Aged , Aged, 80 and over , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Schizophrenia/pathology , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Gray Matter/pathology , White Matter/pathology
5.
Psychiatry Clin Neurosci ; 78(4): 229-236, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38113307

ABSTRACT

AIM: Recovery from stroke is adversely affected by neuropsychiatric complications, cognitive impairment, and functional disability. Better knowledge of their mutual relationships is required to inform effective interventions. Network theory enables the conceptualization of symptoms and impairments as dynamic and mutually interacting systems. We aimed to identify interactions of poststroke complications using network analysis in diverse stroke samples. METHODS: Data from 2185 patients were sourced from member studies of STROKOG (Stroke and Cognition Consortium), an international collaboration of stroke studies. Networks were generated for each cohort, whereby nodes represented neuropsychiatric symptoms, cognitive deficits, and disabilities on activities of daily living. Edges characterized associations between them. Centrality measures were used to identify hub items. RESULTS: Across cohorts, a single network of interrelated poststroke complications emerged. Networks exhibited dissociable depression, apathy, fatigue, cognitive impairment, and functional disability modules. Worry was the most central symptom across cohorts, irrespective of the depression scale used. Items relating to activities of daily living were also highly central nodes. Follow-up analysis in two studies revealed that individuals who worried had more densely connected networks than those free of worry (CASPER [Cognition and Affect after Stroke: Prospective Evaluation of Risks] study: S = 9.72, P = 0.038; SSS [Sydney Stroke Study]: S = 13.56, P = 0.069). CONCLUSION: Neuropsychiatric symptoms are highly interconnected with cognitive deficits and functional disabilities resulting from stroke. Given their central position and high level of connectedness, worry and activities of daily living have the potential to drive multimorbidity and mutual reinforcement between domains of poststroke complications. Targeting these factors early after stroke may have benefits that extend to other complications, leading to better stroke outcomes.


Subject(s)
Cognition Disorders , Cognitive Dysfunction , Stroke , Humans , Depression/psychology , Activities of Daily Living/psychology , Stroke/complications , Stroke/therapy , Cognition Disorders/complications , Cognitive Dysfunction/complications , Cognition
6.
bioRxiv ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37961617

ABSTRACT

Objective: Schizophrenia is a multifaceted disorder associated with structural brain heterogeneity. Despite its relevance for identifying illness subtypes and informative biomarkers, structural brain heterogeneity in schizophrenia remains incompletely understood. Therefore, the objective of this study was to provide a comprehensive insight into the structural brain heterogeneity associated with schizophrenia. Methods: This meta- and mega-analysis investigated the variability of multimodal structural brain measures of white and gray matter in individuals with schizophrenia versus healthy controls. Using the ENIGMA dataset of MRI-based brain measures from 22 international sites with up to 6139 individuals for a given brain measure, we examined variability in cortical thickness, surface area, folding index, subcortical volume and fractional anisotropy. Results: We found that individuals with schizophrenia are distinguished by higher heterogeneity in the frontotemporal network with regard to multimodal structural measures. Moreover, individuals with schizophrenia showed higher homogeneity of the folding index, especially in the left parahippocampal region. Conclusions: Higher multimodal heterogeneity in frontotemporal regions potentially implies different subtypes of schizophrenia that converge on impaired frontotemporal interaction as a core feature of the disorder. Conversely, more homogeneous folding patterns in the left parahippocampal region might signify a consistent characteristic of schizophrenia shared across subtypes. These findings underscore the importance of structural brain variability in advancing our neurobiological understanding of schizophrenia, and aid in identifying illness subtypes as well as informative biomarkers.

7.
Neuroimage ; 283: 120407, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37839728

ABSTRACT

We mapped functional and structural brain networks for more than 40,000 UK Biobank participants. Structural connectivity was estimated with tractography and diffusion MRI. Resting-state functional MRI was used to infer regional functional connectivity. We provide high-quality structural and functional connectomes for multiple parcellation granularities, several alternative measures of interregional connectivity, and a variety of common data pre-processing techniques, yielding more than one million connectomes in total and requiring more than 200,000 h of compute time. For a single subject, we provide 28 out-of-the-box versions of structural and functional brain networks, allowing users to select, e.g., the parcellation and connectivity measure that best suit their research goals. Furthermore, we provide code and intermediate data for the time-efficient reconstruction of more than 1000 different versions of a subject's connectome based on an array of methodological choices. All connectomes are available via the UK Biobank data-sharing platform and our connectome mapping pipelines are openly available. In this report, we describe our connectome resource in detail for users, outline key considerations in developing an efficient pipeline to map an unprecedented number of connectomes, and report on the quality control procedures that were completed to ensure connectome reliability and accuracy. We demonstrate that our structural and functional connectivity matrices meet a number of quality control checks and replicate previously established findings in network neuroscience. We envisage that our resource will enable new studies of the human connectome in health, disease, and aging at an unprecedented scale.


Subject(s)
Connectome , Humans , Connectome/methods , Reproducibility of Results , Biological Specimen Banks , Brain/diagnostic imaging , United Kingdom
8.
Acta Neuropsychiatr ; : 1-6, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37612148

ABSTRACT

OBJECTIVE: A range of neuropathological changes occur in the brains of individuals with adult Niemann-Pick type C disease (NPC), a recessive disorder of cholesterol trafficking that results in accumulation of cholesterol and gangliosides in lysosomes, particularly in neurons. One of the most significant regions of grey matter loss occurs in the thalami, which abut the midline. What is not known is whether these are neurodevelopmental in origin well prior to symptomatic onset. We aimed to examine other markers of midline developmental anomalies in adults with NPC. METHOD: We examined the size of adhesio interthalamica (AI) and cavum septum pellucidum (CSP) (if present) in nine individuals diagnosed with NPC and nine healthy comparison subjects, matched for age and gender, using a 3T magnetic resonance volumetric sequence and measured the length of the AI and CSP in mm. RESULTS: We found that 5/9 NPC patients and 0/9 controls had a missing AI. AI length was significantly shorter in the patient group. No subject in other group had a large CSP, and CSP length did not differ. Duration of illness showed a trend to a negative correlation with AI length in patients. CONCLUSIONS: Our findings suggest that adult NPC patients show some markers of early neurodevelopmental disturbance, matching findings seen in psychotic disorders. The differences in AI, but not CSP, suggest neurodevelopmental change may occur early in gestation rather than post-partum. The relationship with duration of illness suggests that there may be atrophy over time in these structures, consistent with prior analyses of grey matter regions in NPC.

10.
Proc Natl Acad Sci U S A ; 120(20): e2216798120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155868

ABSTRACT

Brain scans acquired across large, age-diverse cohorts have facilitated recent progress in establishing normative brain aging charts. Here, we ask the critical question of whether cross-sectional estimates of age-related brain trajectories resemble those directly measured from longitudinal data. We show that age-related brain changes inferred from cross-sectionally mapped brain charts can substantially underestimate actual changes measured longitudinally. We further find that brain aging trajectories vary markedly between individuals and are difficult to predict with population-level age trends estimated cross-sectionally. Prediction errors relate modestly to neuroimaging confounds and lifestyle factors. Our findings provide explicit evidence for the importance of longitudinal measurements in ascertaining brain development and aging trajectories.


Subject(s)
Aging , Brain , Humans , Cross-Sectional Studies , Longitudinal Studies , Brain/diagnostic imaging , Neuroimaging , Magnetic Resonance Imaging
11.
JAMA Psychiatry ; 80(6): 585-596, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37017952

ABSTRACT

Importance: Sleep problems and psychopathology symptoms are highly comorbid and bidirectionally correlated across childhood and adolescence. Whether these associations are specific to discrete profiles of sleep problems and specific internalizing and externalizing phenomena is currently unclear. Objective: To characterize individual changes in profiles of sleep problems and their prospective associations with psychopathology symptoms across the transition from childhood to adolescence. Design, Setting, and Participants: This observational cohort study used baseline data (participant age of 9 to 11 years) and 2-year follow-up data (participant age of 11 to 13 years) from the community-setting, multicenter Adolescent Brain Cognitive Development (ABCD) study. Individuals were assessed for a range of sleep problems at both waves and categorized into profiles via latent profile analysis. The stability and change in these profiles over time was assessed via latent transition analysis. Logistic regression models examined whether psychopathology symptoms were cross-sectionally associated with profile membership and whether transitions between profiles were associated with changes psychopathology symptoms over time. Data were collected from September 2016 to January 2020, and data were analyzed from August 2021 to July 2022. Exposures: Sleep problems were assessed at both baseline and follow-up via the parent-reported Sleep Disturbance Scale for Children (SDSC). Main Outcomes and Measures: Psychopathology symptoms at both baseline and follow-up were assessed using the internalizing and externalizing dimension scores derived from the parent-reported Child Behavior Checklist. Results: A total of 10 313 individuals (4913 [47.6%] were female) were categorized into 4 latent profiles of sleep problems at both baseline and follow-up: a low disturbance profile, a sleep onset/maintenance problems profile, a moderate and nonspecific disturbance profile (termed mixed disturbance), and a high disturbance profile. Individuals in the 3 more severe problem profiles displayed greater risk of concurrent internalizing symptoms (sleep onset/maintenance problems: odds ratio [OR], 1.30; 95% CI, 1.25-1.35; P < .001; mixed disturbance: OR, 1.29; 95% CI, 1.25-1.33; P < .001; high disturbance: OR, 1.44; 95% CI, 1.40-1.49; P < .001) and externalizing symptoms (sleep onset/maintenance problems: OR, 1.20; 95% CI, 1.16-1.23; P < .001; mixed disturbance: OR, 1.17; 95% CI, 1.14-1.20; P < .001; high disturbance: OR, 1.24; 95% CI, 1.21-1.28; P < .001). Transitions between sleep profiles over time were associated with prospective internalizing and externalizing symptoms, but not vice versa. Conclusions and Relevance: There are substantial changes in sleep problems across the transition to adolescence that are associated with later internalizing and externalizing symptoms. Sleep profiles could be targeted in future intervention and treatment programs to improve sleep-related and mental health-related outcomes across development.


Subject(s)
Problem Behavior , Sleep Wake Disorders , Humans , Child , Adolescent , Female , Male , Emotions , Cohort Studies , Sleep Wake Disorders/epidemiology , Sleep
12.
Mol Psychiatry ; 28(5): 2030-2038, 2023 May.
Article in English | MEDLINE | ID: mdl-37095352

ABSTRACT

Studies applying Free Water Imaging have consistently reported significant global increases in extracellular free water (FW) in populations of individuals with early psychosis. However, these published studies focused on homogenous clinical participant groups (e.g., only first episode or chronic), thereby limiting our understanding of the time course of free water elevations across illness stages. Moreover, the relationship between FW and duration of illness has yet to be directly tested. Leveraging our multi-site diffusion magnetic resonance imaging(dMRI) harmonization approach, we analyzed dMRI scans collected by 12 international sites from 441 healthy controls and 434 individuals diagnosed with schizophrenia-spectrum disorders at different illness stages and ages (15-58 years). We characterized the pattern of age-related FW changes by assessing whole brain white matter in individuals with schizophrenia and healthy controls. In individuals with schizophrenia, average whole brain FW was higher than in controls across all ages, with the greatest FW values observed from 15 to 23 years (effect size range = [0.70-0.87]). Following this peak, FW exhibited a monotonic decrease until reaching a minima at the age of 39 years. After 39 years, an attenuated monotonic increase in FW was observed, but with markedly smaller effect sizes when compared to younger patients (effect size range = [0.32-0.43]). Importantly, FW was found to be negatively associated with duration of illness in schizophrenia (p = 0.006), independent of the effects of other clinical and demographic data. In summary, our study finds in a large, age-diverse sample that participants with schizophrenia with a shorter duration of illness showed higher FW values compared to participants with more prolonged illness. Our findings provide further evidence that elevations in the FW are present in individuals with schizophrenia, with the greatest differences in the FW being observed in those at the early stages of the disorder, which might suggest acute extracellular processes.

13.
JAMA Psychiatry ; 80(6): 567-576, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37099313

ABSTRACT

Importance: Physical health and chronic medical comorbidities are underestimated, inadequately treated, and often overlooked in psychiatry. A multiorgan, systemwide characterization of brain and body health in neuropsychiatric disorders may enable systematic evaluation of brain-body health status in patients and potentially identify new therapeutic targets. Objective: To evaluate the health status of the brain and 7 body systems across common neuropsychiatric disorders. Design, Setting, and Participants: Brain imaging phenotypes, physiological measures, and blood- and urine-based markers were harmonized across multiple population-based neuroimaging biobanks in the US, UK, and Australia, including UK Biobank; Australian Schizophrenia Research Bank; Australian Imaging, Biomarkers, and Lifestyle Flagship Study of Ageing; Alzheimer's Disease Neuroimaging Initiative; Prospective Imaging Study of Ageing; Human Connectome Project-Young Adult; and Human Connectome Project-Aging. Cross-sectional data acquired between March 2006 and December 2020 were used to study organ health. Data were analyzed from October 18, 2021, to July 21, 2022. Adults aged 18 to 95 years with a lifetime diagnosis of 1 or more common neuropsychiatric disorders, including schizophrenia, bipolar disorder, depression, generalized anxiety disorder, and a healthy comparison group were included. Main Outcomes and Measures: Deviations from normative reference ranges for composite health scores indexing the health and function of the brain and 7 body systems. Secondary outcomes included accuracy of classifying diagnoses (disease vs control) and differentiating between diagnoses (disease vs disease), measured using the area under the receiver operating characteristic curve (AUC). Results: There were 85 748 participants with preselected neuropsychiatric disorders (36 324 male) and 87 420 healthy control individuals (40 560 male) included in this study. Body health, especially scores indexing metabolic, hepatic, and immune health, deviated from normative reference ranges for all 4 neuropsychiatric disorders studied. Poor body health was a more pronounced illness manifestation compared to brain changes in schizophrenia (AUC for body = 0.81 [95% CI, 0.79-0.82]; AUC for brain = 0.79 [95% CI, 0.79-0.79]), bipolar disorder (AUC for body = 0.67 [95% CI, 0.67-0.68]; AUC for brain = 0.58 [95% CI, 0.57-0.58]), depression (AUC for body = 0.67 [95% CI, 0.67-0.68]; AUC for brain = 0.58 [95% CI, 0.58-0.58]), and anxiety (AUC for body = 0.63 [95% CI, 0.63-0.63]; AUC for brain = 0.57 [95% CI, 0.57-0.58]). However, brain health enabled more accurate differentiation between distinct neuropsychiatric diagnoses than body health (schizophrenia-other: mean AUC for body = 0.70 [95% CI, 0.70-0.71] and mean AUC for brain = 0.79 [95% CI, 0.79-0.80]; bipolar disorder-other: mean AUC for body = 0.60 [95% CI, 0.59-0.60] and mean AUC for brain = 0.65 [95% CI, 0.65-0.65]; depression-other: mean AUC for body = 0.61 [95% CI, 0.60-0.63] and mean AUC for brain = 0.65 [95% CI, 0.65-0.66]; anxiety-other: mean AUC for body = 0.63 [95% CI, 0.62-0.63] and mean AUC for brain = 0.66 [95% CI, 0.65-0.66). Conclusions and Relevance: In this cross-sectional study, neuropsychiatric disorders shared a substantial and largely overlapping imprint of poor body health. Routinely monitoring body health and integrated physical and mental health care may help reduce the adverse effect of physical comorbidity in people with mental illness.


Subject(s)
Bipolar Disorder , Brain , Young Adult , Humans , Male , Cross-Sectional Studies , Prospective Studies , Australia , Brain/diagnostic imaging , Bipolar Disorder/psychology
14.
Neuroimage ; 270: 119962, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36822248

ABSTRACT

Generative models of the human connectome enable in silico generation of brain networks based on probabilistic wiring rules. These wiring rules are governed by a small number of parameters that are typically fitted to individual connectomes and quantify the extent to which geometry and topology shape the generative process. A significant shortcoming of generative modeling in large cohort studies is that parameter estimation is computationally burdensome, and the accuracy and reliability of current estimation methods remain untested. Here, we propose a fast, reliable, and accurate parameter estimation method for connectome generative models that is scalable to large sample sizes. Our method achieves improved estimation accuracy and reliability and reduces computational cost by orders of magnitude, compared to established methods. We demonstrate an inherent tradeoff between accuracy, reliability, and computational expense in parameter estimation and provide recommendations for leveraging this tradeoff. To enable power analyses in future studies, we empirically approximate the minimum sample size required to detect between-group differences in generative model parameters. While we focus on the classic two-parameter generative model based on connection length and the topological matching index, our method can be generalized to other growth-based generative models. Our work provides a statistical and practical guide to parameter estimation for connectome generative models.


Subject(s)
Connectome , Humans , Connectome/methods , Reproducibility of Results , Models, Statistical , Brain/diagnostic imaging , Sample Size
15.
J Child Psychol Psychiatry ; 64(3): 449-460, 2023 03.
Article in English | MEDLINE | ID: mdl-36325967

ABSTRACT

BACKGROUND: Morning-evening preference is defined as an individual's preference for a morning- or evening-oriented rhythm. Across adolescence, a preference for eveningness becomes more predominant. Although eveningness is cross-sectionally associated with internalizing and externalizing psychopathology, few studies have examined developmental changes in eveningness and its potential biological substrates. Here, we investigated the longitudinal relationships among the trajectory of eveningness preference, internalizing and externalizing psychopathology and white matter development, across adolescence. METHODS: Two-hundred and nine adolescents (49% male) were assessed longitudinally at four separate time points between 12 and 19 years of age. Morning-evening preference and internalizing and externalizing symptoms were assessed at each time point. Diffusion-weighted images were acquired on a subset of participants at the final two time points to estimate changes in global mean fractional anisotropy (FA). Linear mixed models were performed to estimate the change in eveningness over time. A series of linear regression models assessed the influence of change in eveningness on psychopathology and white matter development at age 19. RESULTS: Across the sample, a preference for eveningness became more predominant by 19 years of age. Greater individual-level change towards eveningness significantly predicted greater severity in externalizing, but not internalizing, symptoms at 19 years of age. In contrast, change in psychopathology from 12 to 19 years of age was not associated with morning-eveningness at age 19. A change towards eveningness predicted an attenuated increase in FA between 17 and 19 years of age. CONCLUSIONS: This study suggests that developmental changes in morning-evening preference may predict both neurodevelopmental and psychological outcomes in adolescents.


Subject(s)
Circadian Rhythm , Mental Disorders , Humans , Male , Adolescent , Young Adult , Adult , Female , Brain/diagnostic imaging , Surveys and Questionnaires , Sleep
16.
Mol Psychiatry ; 27(4): 2052-2060, 2022 04.
Article in English | MEDLINE | ID: mdl-35145230

ABSTRACT

Brain morphology differs markedly between individuals with schizophrenia, but the cellular and genetic basis of this heterogeneity is poorly understood. Here, we sought to determine whether cortical thickness (CTh) heterogeneity in schizophrenia relates to interregional variation in distinct neural cell types, as inferred from established gene expression data and person-specific genomic variation. This study comprised 1849 participants in total, including a discovery (140 cases and 1267 controls) and a validation cohort (335 cases and 185 controls). To characterize CTh heterogeneity, normative ranges were established for 34 cortical regions and the extent of deviation from these ranges was measured for each individual with schizophrenia. CTh deviations were explained by interregional gene expression levels of five out of seven neural cell types examined: (1) astrocytes; (2) endothelial cells; (3) oligodendrocyte progenitor cells (OPCs); (4) excitatory neurons; and (5) inhibitory neurons. Regional alignment between CTh alterations with cell type transcriptional maps distinguished broad patient subtypes, which were validated against genomic data drawn from the same individuals. In a predominantly neuronal/endothelial subtype (22% of patients), CTh deviations covaried with polygenic risk for schizophrenia (sczPRS) calculated specifically from genes marking neuronal and endothelial cells (r = -0.40, p = 0.010). Whereas, in a predominantly glia/OPC subtype (43% of patients), CTh deviations covaried with sczPRS calculated from glia and OPC-linked genes (r = -0.30, p = 0.028). This multi-scale analysis of genomic, transcriptomic, and brain phenotypic data may indicate that CTh heterogeneity in schizophrenia relates to inter-individual variation in cell-type specific functions. Decomposing heterogeneity in relation to cortical cell types enables prioritization of schizophrenia subsets for future disease modeling efforts.


Subject(s)
Schizophrenia , Brain , Cerebral Cortex , Endothelial Cells , Humans , Magnetic Resonance Imaging , Multifactorial Inheritance , Schizophrenia/genetics
17.
Eur Arch Psychiatry Clin Neurosci ; 272(6): 971-983, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34557990

ABSTRACT

Episodic memory ability relies on hippocampal-prefrontal connectivity. However, few studies have examined relationships between memory performance and white matter (WM) microstructure in hippocampal-prefrontal pathways in schizophrenia-spectrum disorder (SSDs). Here, we investigated these relationships in individuals with first-episode psychosis (FEP) and chronic schizophrenia-spectrum disorders (SSDs) using tractography analysis designed to interrogate the microstructure of WM tracts in the hippocampal-prefrontal pathway. Measures of WM microstructure (fractional anisotropy [FA], radial diffusivity [RD], and axial diffusivity [AD]) were obtained for 47 individuals with chronic SSDs, 28 FEP individuals, 52 older healthy controls, and 27 younger healthy controls. Tractography analysis was performed between the hippocampus and three targets involved in hippocampal-prefrontal connectivity (thalamus, amygdala, nucleus accumbens). Measures of WM microstructure were then examined in relation to episodic memory performance separately across each group. Both those with FEP and chronic SSDs demonstrated impaired episodic memory performance. However, abnormal WM microstructure was only observed in individuals with chronic SSDs. Abnormal WM microstructure in the hippocampal-thalamic pathway in the right hemisphere was associated with poorer memory performance in individuals with chronic SSDs. These findings suggest that disruptions in WM microstructure in the hippocampal-prefrontal pathway may contribute to memory impairments in individuals with chronic SSDs but not FEP.


Subject(s)
Memory, Episodic , Psychotic Disorders/complications , Schizophrenia/complications , White Matter/physiology , Anisotropy , Case-Control Studies , Diffusion Tensor Imaging , Hippocampus/physiology , Humans , Memory Disorders/diagnostic imaging , Memory Disorders/etiology , Prefrontal Cortex/physiology , Psychotic Disorders/diagnostic imaging , Schizophrenia/diagnostic imaging , White Matter/diagnostic imaging
18.
Aust N Z J Psychiatry ; 56(7): 852-861, 2022 07.
Article in English | MEDLINE | ID: mdl-34420425

ABSTRACT

OBJECTIVES: Survival information in dementia is important for future planning and service provision. There have been limited Australian data investigating survival duration and risk factors associated with mortality in younger-onset dementia. METHODS: This was a cross-sectional retrospective study investigating survival in inpatients with a diagnosis of dementia admitted to a tertiary neuropsychiatry service from 1991 to 2014. The Australian Institute of Health and Welfare National Death Index was used to obtain mortality information. RESULTS: A total of 468 inpatients were identified, of which 75% had symptom onset at ⩽65 years of age (defined as younger-onset dementia). Dementia was categorised into four subtypes, Alzheimer's dementia, frontotemporal dementia, vascular dementia and other dementias; 72% of the patients had died. Overall median survival duration was 10.6 years with no significant differences in duration within the dementia subtypes (p = 0.174). Survival in older-onset dementia (symptom onset at >65 years of age) was about half of that in younger-onset dementia (median survival 6.3 years compared to 12.7 years, respectively). Independent predictors of mortality were having older-onset dementia (hazard ratio: 3.2) and having initial presenting symptoms being cognitive in nature (hazard ratio: 1.5). Females with an older-onset dementia had longer survival compared to males with an older-onset dementia, and this was reversed for younger-onset dementia. Older-onset dementia and younger-onset dementia conferred 3 and 6 times, respectively, increased risk of death compared to the general population. CONCLUSION: This is the largest Australian study to date investigating survival and risk factors to mortality in dementia. We report important clinical information to patients with dementia and their families about prognosis which will assist with future planning. Our findings suggest that for both older-onset dementia and younger-onset dementia, 'new onset' psychiatric symptoms precede the cognitive symptoms of a neurodegenerative process. This, and sex differences in survival depending on the age of onset of the dementia warrant further investigation.


Subject(s)
Alzheimer Disease , Dementia , Age of Onset , Aged , Australia/epidemiology , Child , Cognition , Cross-Sectional Studies , Dementia/mortality , Female , Humans , Male , Retrospective Studies
19.
Metab Brain Dis ; 36(7): 2071-2078, 2021 10.
Article in English | MEDLINE | ID: mdl-34146215

ABSTRACT

Hippocampal brain regions are strongly implicated in Niemann Pick type C disease (NPC), but little is known regarding distinct subregions of the hippocampal complex and whether these are equally or differentially affected. To address this gap, we compared volumes of five hippocampal subfields between NPC and healthy individuals using MRI. To this end, 9 adult-onset NPC cases and 9 age- and gender-matched controls underwent a 3 T T1-weighted MRI scan. Gray matter volumes of the cornu ammonis (CA1, CA2 and CA3), dentate gyrus (DG), subiculum, entorhinal cortex and hippocampal-amygdalar transition area were calculated by integrating MRI-based image intensities with microscopically defined cytoarchitectonic probabilities. Compared to healthy controls, NPC patients showed smaller volumes of the CA1-3 and DG regions bilaterally, with the greatest difference localized to the left DG (Cohen's d = 1.993, p = 0.008). No significant associations were shown between hippocampal subfield volumes and key clinical features of NPC, including disease duration, symptom severity and psychosis. The pattern of hippocampal subregional atrophy in NPC differs from those seen in other dementias, which may indicate unique cytoarchitectural vulnerabilities in this earlier-onset disorder. Future MRI studies of hippocampal subfields may clarify its potential as a biomarker of neurodegeneration in NPC.


Subject(s)
Niemann-Pick Disease, Type C , Adult , Atrophy/pathology , Case-Control Studies , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Magnetic Resonance Imaging/methods , Niemann-Pick Disease, Type C/diagnostic imaging
20.
J Magn Reson Imaging ; 54(6): 1819-1829, 2021 12.
Article in English | MEDLINE | ID: mdl-34137112

ABSTRACT

BACKGROUND: Exposure to repetitive head impacts (RHI) is associated with an increased risk of later-life neurobehavioral dysregulation and neurodegenerative disease. The underlying pathomechanisms are largely unknown. PURPOSE: To investigate whether RHI exposure is associated with later-life corpus callosum (CC) microstructure and whether CC microstructure is associated with plasma total tau and neuropsychological/neuropsychiatric functioning. STUDY TYPE: Retrospective cohort study. POPULATION: Seventy-five former professional American football players (age 55.2 ± 8.0 years) with cognitive, behavioral, and mood symptoms. FIELD STRENGTH/SEQUENCE: Diffusion-weighted echo-planar MRI at 3 T. ASSESSMENT: Subjects underwent diffusion MRI, venous puncture, neuropsychological testing, and completed self-report measures of neurobehavioral dysregulation. RHI exposure was assessed using the Cumulative Head Impact Index (CHII). Diffusion MRI measures of CC microstructure (i.e., free-water corrected fractional anisotropy (FA), trace, radial diffusivity (RD), and axial diffusivity (AD)) were extracted from seven segments of the CC (CC1-7), using a tractography clustering algorithm. Neuropsychological tests were selected: Trail Making Test Part A (TMT-A) and Part B (TMT-B), Controlled Oral Word Association Test (COWAT), Stroop Interference Test, and the Behavioral Regulation Index (BRI) from the Behavior Rating Inventory of Executive Function, Adult version (BRIEF-A). STATISTICAL TESTS: Diffusion MRI metrics were tested for associations with RHI exposure, plasma total tau, neuropsychological performance, and neurobehavioral dysregulation using generalized linear models for repeated measures. RESULTS: RHI exposure was associated with increased AD of CC1 (correlation coefficient (r) = 0.32, P < 0.05) and with increased plasma total tau (r = 0.34, P < 0.05). AD of the anterior CC1 was associated with increased plasma total tau (CC1: r = 0.30, P < 0.05; CC2: r = 0.29, P < 0.05). Higher trace, AD, and RD of CC1 were associated with better performance (P < 0.05) in TMT-A (trace, r = 0.33; AD, r = 0.31; and RD, r = 0.28) and TMT-B (trace, r = 0.31; RD, r = 0.34). Higher FA and AD of CC2 were associated with better performance (P < 0.05) in TMT-A (FA, r = 0.36; AD, r = 0.28), TMT-B (FA, r = 0.36; AD, r = 0.27), COWAT (FA, r = 0.36; AD, r = 0.32), and BRI (AD, r = 0.29). DATA CONCLUSION: These results suggest an association among RHI exposure, CC microstructure, plasma total tau, and clinical functioning in former professional American football players. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage: 1.


Subject(s)
Football , Neurodegenerative Diseases , White Matter , Corpus Callosum/diagnostic imaging , Diffusion Tensor Imaging , Humans , Middle Aged , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...