Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Transpl Infect Dis ; 26(1): e14233, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38180168

ABSTRACT

BACKGROUND: Cytomegalovirus (CMV) infections are a common complication after kidney transplantation (KTx) and negatively affecting patient outcome. Valganciclovir (VGC) prophylaxis is often limited by drug-induced side effects and dose reduction due to decline in kidney function. METHOD: In the present study, episodes of CMV viremia in the first year after KTx in a cohort of 316 recipients were analyzed retrospectively to identify risk factors linked to persistent infections. RESULTS: In the studied cohort, 18.7% of patients showed a high-risk (HR) constellation (D+/R-) for CMV infections. CMV viremia affected 22% of our cohort, with HR patients being the most affected cohort (44.1%). Within this group, most viremic events (65.3%) occurred while patients were still on prophylactic therapy, showing significantly higher viral loads and a longer duration compared to seropositive recipients. CONCLUSION: The analysis at hand revealed that detection of viremia under ongoing antiviral prophylaxis bears an increased risk for sustained viral replication and antiviral drug resistance in HR patients. We identified low estimated glomerular filtration rate (eGFR) and lower dose VGC prophylaxis post-KTx as a risk factor for breakthrough infections in HR patients in our single center cohort. These patients might benefit from a closer CMV monitoring or novel prophylactic agents as letermovir.


Subject(s)
Cytomegalovirus Infections , Kidney Transplantation , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Cytomegalovirus , Kidney Transplantation/adverse effects , Retrospective Studies , Viremia/drug therapy , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/epidemiology , Cytomegalovirus Infections/prevention & control , Valganciclovir/therapeutic use , Transplant Recipients , Ganciclovir/therapeutic use , Ganciclovir/pharmacology
2.
J Infect Dis ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38230877

ABSTRACT

BACKGROUND: Torque Teno Virus (TTV) is a non-enveloped, circular single-strand DNA virus and part of the human virome. The replication of TTV was related to the immune status in patients treated with immunosuppressive drugs after organ transplantation. We hypothesize that TTV load could be an additional marker for immune function in people living with HIV (PLWH). METHODS: In this analysis serum samples of PLWH from the RESINA multicenter cohort were reanalysed for TTV. Investigated clinical and epidemiological parameters included Pegivirus (HPgV) load, age, sex, HIV load, CD4+ cell count (CDC 1, 2, 3) and CDC clinical stages (1993 CDC classification system, A, B, C) before initiation of antiretroviral treatment. Regression analysis was used to detect possible associations among parameters. RESULTS: Our analysis confirmed TTV as a strong predictor of CD4+ cell count and CDC class 3. This relationship was used to propose a first classification of TTV load in regard to clinical stage. We found no association with clinical CDC stages A, B and C. HPgV load was inversely correlated with HIV load but not TTV load. CONCLUSIONS: TTV load was associated with immunodeficiency in PLWH. Neither TTV- nor HIV load were predictive for the clinical categories of HIV infection.

4.
Sci Immunol ; 8(89): eadk5845, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37976348

ABSTRACT

The human immune response must continuously adapt to newly emerging SARS-CoV-2 variants. To investigate how B cells respond to repeated SARS-CoV-2 antigen exposure by Wu01 booster vaccination and Omicron breakthrough infection, we performed a molecular longitudinal analysis of the memory B cell pool. We demonstrate that a subsequent breakthrough infection substantially increases the frequency of B cells encoding SARS-CoV-2-neutralizing antibodies. However, this is not primarily attributable to maturation, but to selection of preexisting B cell clones. Moreover, broadly reactive memory B cells arose early and even neutralized highly mutated variants like XBB.1.5 that the individuals had not encountered. Together, our data show that SARS-CoV-2 immunity is largely imprinted on Wu01 over the course of multiple antigen contacts but can respond to new variants through preexisting diversity.


Subject(s)
COVID-19 , Memory B Cells , Humans , Immunity, Humoral , Breakthrough Infections , SARS-CoV-2 , Antibodies, Viral
5.
Front Immunol ; 14: 1226622, 2023.
Article in English | MEDLINE | ID: mdl-37781408

ABSTRACT

Background: While the short-term symptoms of post-COVID syndromes (PCS) are well-known, the long-term clinical characteristics, risk factors and outcomes of PCS remain unclear. Moreover, there is ongoing discussion about the effectiveness of post-infection vaccination against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) to aid in PCS recovery. Methods: In this longitudinal and observational case-control study we aimed at identifying long-term PCS courses and evaluating the effects of post-infection vaccinations on PCS recovery. Individuals with initial mild COVID-19 were followed for a period of 15 months after primary infection. We assessed PCS outcomes, distinct symptom clusters (SC), and SARS-CoV-2 immunoglobulin G (IgG) levels in patients who received SARS-CoV-2 vaccination, as well as those who did not. To identify potential associating factors with PCS, we used binomial regression models and reported the results as odds ratios (OR) with 95% confidence intervals (95%CI). Results: Out of 958 patients, follow-up data at 15 month after infection was obtained for 222 (23.2%) outpatients. Of those individuals, 36.5% (81/222) and 31.1% (69/222) were identified to have PCS at month 10 and 15, respectively. Fatigue and dyspnea (SC2) rather than anosmia and ageusia (SC1) constituted PCS at month 15. SARS-CoV-2 IgG levels were equally distributed over time among age groups, sex, and absence/presence of PCS. Of the 222 patients, 77.0% (171/222) were vaccinated between 10- and 15-months post-infection, but vaccination did not affect PCS recovery at month 15. 26.3% of unvaccinated and 25.8% of vaccinated outpatients improved from PCS (p= .9646). Baseline headache (SC4) and diarrhoea (SC5) were risk factors for PCS at months 10 and 15 (SC4: OR 1.85 (95%CI 1.04-3.26), p=.0390; SC5: OR 3.27(95%CI 1.54-6.64), p=.0009). Conclusion: Based on the specific symptoms of PCS our findings show a shift in the pattern of recovery. We found no effect of SARS-CoV-2 vaccination on PCS recovery and recommend further studies to identify predicting biomarkers and targeted PCS therapeutics.


Subject(s)
COVID-19 , Outpatients , Post-Acute COVID-19 Syndrome , Humans , Case-Control Studies , COVID-19 Vaccines/administration & dosage , Immunoglobulin G , Risk Factors , SARS-CoV-2 , Vaccination , Longitudinal Studies
6.
J Mol Cell Biol ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891014

ABSTRACT

The novel coronavirus pandemic, first reported in December 2019, was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection leads to a strong immune response and activation of antigen-presenting cells, which can elicit acute respiratory distress syndrome (ARDS) characterized by the rapid onset of widespread inflammation, the so-called cytokine storm. In response to viral infections, monocytes are recruited into the lung and subsequently differentiate into dendritic cells (DCs). DCs are critical players in the development of the acute lung inflammation that causes ARDS. Here we focus on the interaction of a specific SARS-CoV-2 open reading frame protein, ORF8, with DCs. We show that ORF8 binds to DCs, causes a pre-maturation of differentiating DCs, and induces the secretion of multiple proinflammatory cytokines by these cells. In addition, we identified DC-SIGN as a possible interaction partner of ORF8 on DCs. Blockade of ORF8 leads to reduced production of IL-1ß, IL-6, IL-12p70, TNF-α, MCP-1 (also named CCL2), and IL-10 by DCs. Therefore, a neutralizing antibody blocking the ORF8-mediated cytokine and chemokine response could be an improved therapeutical strategy against severe SARS-CoV-2.

7.
Eur J Haematol ; 111(6): 963-969, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37772680

ABSTRACT

BACKGROUND: Immune recovery following allogeneic hematopoietic stem cell transplantation (allo-HSCT) decisively influences the occurrence of opportunistic infections, one of the leading causes of death among this group of patients. Yet, today, there are no laboratory parameters mirroring immune function sufficiently. Torque teno virus (TTV) has already proven itself as a functional immune marker in other settings. AIMS: In this analysis, we investigated whether monitoring of TTV-DNA load in whole blood is able to provide additional information on the capacity of the immune system to control cytomegalovirus (CMV) replication in allo-HSCT recipients. METHODS: Whole blood samples from 59 patients were collected upon allo-HSCT (between Day -7 and +10), on Day +14, +21, +28, +56, +90, and +365 post-transplant. TTV-DNA loads and other relevant clinical information were correlated with the risk of CMV infections or reactivations, defined by evidence of viral replication in blood. RESULTS: CMV serostatus of the recipient and a TTV load below 1000 copies/mL upon allo-HSCT were significantly associated with an increased incidence of CMV infection or reactivation. CONCLUSIONS: Quantification of TTV load in the early phase of allo-HSCT procedure could provide additional information in order to identify patients at risk for CMV infection or reactivation.


Subject(s)
Cytomegalovirus Infections , Hematopoietic Stem Cell Transplantation , Torque teno virus , Humans , Cytomegalovirus , Torque teno virus/genetics , DNA, Viral , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/etiology , Risk Assessment , Hematopoietic Stem Cell Transplantation/adverse effects , Viral Load
8.
Microorganisms ; 11(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37317286

ABSTRACT

Potential etiological relevance for gastroenteric disorders including diarrhea has been assigned to Arcobacter butzleri. However, standard routine diagnostic algorithms for stool samples of patients with diarrhea are rarely adapted to the detection of this pathogen and so, A. butzleri is likely to go undetected unless it is specifically addressed, e.g., by applying pathogen-specific molecular diagnostic approaches. In the study presented here, we compared three real-time PCR assays targeting the genes hsp60, rpoB/C (both hybridization probe assays) and gyrA (fluorescence resonance energy transfer assay) of A. butzleri in a test comparison without a reference standard using a stool sample collection with a high pretest probability from the Ghanaian endemicity setting. Latent class analysis was applied with the PCR results obtained with a collection of 1495 stool samples showing no signs of PCR inhibition to assess the real-time PCR assays' diagnostic accuracy. Calculated sensitivity and specificity were 93.0% and 96.9% for the hsp60-PCR, 100% and 98.2% for the rpoB/C-PCR, as well as 12.7% and 99.8% for the gyrA-PCR, respectively. The calculated A. butzleri prevalence within the assessed Ghanaian population was 14.7%. As indicated by test results obtained with high-titer spiked samples, cross-reactions of the hsp60-assay and rpoB/C-assay with phylogenetically related species such as A. cryaerophilus can occur but are less likely with phylogenetically more distant species like, e.g., A. lanthieri. In conclusion, the rpoB/C-assay showed the most promising performance characteristics as the only assay with sensitivity >95%, albeit associated with a broad 95%-confidence interval. In addition, this assay showed still-acceptable specificity of >98% in spite of the known cross-reactivity with phylogenetically closely related species such as A. cryaerophilus. If higher certainty is desired, the gyrA-assay with specificity close to 100% can be applied for confirmation testing with samples showing positive rpoB/C-PCR results. However, in case of a negative result in the gyrA-assay, this cannot reliably exclude the detection of A. butzleri in the rpoB/C-assay due to the gyrA-assay's very low sensitivity.

9.
Nat Commun ; 14(1): 2835, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208323

ABSTRACT

Determining SARS-CoV-2 immunity is critical to assess COVID-19 risk and the need for prevention and mitigation strategies. We measured SARS-CoV-2 Spike/Nucleocapsid seroprevalence and serum neutralizing activity against Wu01, BA.4/5 and BQ.1.1 in a convenience sample of 1,411 patients receiving medical treatment in the emergency departments of five university hospitals in North Rhine-Westphalia, Germany, in August/September 2022. 62% reported underlying medical conditions and 67.7% were vaccinated according to German COVID-19 vaccination recommendations (13.9% fully vaccinated, 54.3% one booster, 23.4% two boosters). We detected Spike-IgG in 95.6%, Nucleocapsid-IgG in 24.0%, and neutralization against Wu01, BA.4/5 and BQ.1.1 in 94.4%, 85.0%, and 73.8% of participants, respectively. Neutralization against BA.4/5 and BQ.1.1 was 5.6- and 23.4-fold lower compared to Wu01. Accuracy of S-IgG detection for determination of neutralizing activity against BQ.1.1 was reduced substantially. We explored previous vaccinations and infections as correlates of BQ.1.1 neutralization using multivariable and Bayesian network analyses. Given a rather moderate adherence to COVID-19 vaccination recommendations, this analysis highlights the need to improve vaccine-uptake to reduce the COVID-19 risk of immune evasive variants. The study was registered as clinical trial (DRKS00029414).


Subject(s)
COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , Bayes Theorem , COVID-19/prevention & control , COVID-19 Vaccines , Immunity, Humoral , Immunoglobulin G , SARS-CoV-2 , Seroepidemiologic Studies , Vaccination
10.
JCI Insight ; 8(8)2023 04 24.
Article in English | MEDLINE | ID: mdl-36881474

ABSTRACT

BACKGROUNDAfter its introduction as standard-of-care for severe COVID-19, dexamethasone has been administered to a large number of patients globally. Detailed knowledge of its impact on the cellular and humoral immune response to SARS-CoV-2 remains scarce.METHODSWe included immunocompetent individuals with (a) mild COVID-19, (b) severe COVID-19 before introduction of dexamethasone treatment, and (c) severe COVID-19 infection treated with dexamethasone from prospective observational cohort studies at Charité-Universitätsmedizin Berlin, Germany. We analyzed SARS-CoV-2 spike-reactive T cells, spike-specific IgG titers, and serum neutralizing activity against B.1.1.7 and B.1.617.2 in samples ranging from 2 weeks to 6 months after infection. We also analyzed BA.2 neutralization in sera after booster immunization.RESULTSPatients with severe COVID-19 and dexamethasone treatment had lower T cell and antibody responses to SARS-CoV-2 compared with patients without dexamethasone treatment in the early phase of disease, which converged in both groups before 6 months after infection and also after immunization. Patients with mild COVID-19 had comparatively lower T cell and antibody responses than patients with severe disease, including a lower response to booster immunization during convalescence.CONCLUSIONDexamethasone treatment was associated with a short-term reduction in T cell and antibody responses in severe COVID-19 when compared with the nontreated group, but this difference evened out 6 months after infection. We confirm higher cellular and humoral immune responses in patients after severe versus mild COVID-19 and the concept of improved hybrid immunity upon immunization.FUNDINGBerlin Institute of Health, German Federal Ministry of Education, and German Federal Institute for Drugs and Medical Devices.


Subject(s)
Antibody Formation , COVID-19 , Humans , SARS-CoV-2 , COVID-19 Drug Treatment , T-Lymphocytes , Immunization, Secondary , Dexamethasone/therapeutic use
11.
Bone Marrow Transplant ; 58(6): 639-646, 2023 06.
Article in English | MEDLINE | ID: mdl-36869190

ABSTRACT

Cytomegalovirus (CMV) represents one of the most common infectious complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Currently, a common diagnostic test used to stratify the risk for CMV infection in allo-HSCT recipients is the qualitative CMV serology of donor and recipient. A positive serostatus of the recipient is the most important risk factor for CMV reactivation and associated with reduced overall survival post-transplantation (TX). Direct and indirect effects of CMV are involved in the poorer survival outcome. The present study investigated if the quantitative interpretation of anti-CMV IgG before allo-HSCT might serve as a novel parameter for the identification of patients at risk for CMV reactivation and worse outcome post-TX. For this purpose, a cohort of 440 allo-HSCT recipients over a period of 10 years was retrospectively analyzed. Our findings indicated that patients with high CMV IgG pre-allo-HSCT had a higher risk to develop CMV reactivation, including clinically relevant infections, and a worse prognosis 36 months post-allo-HSCT as compared to recipients with low CMV IgG values. In the letermovir (LMV) era, this group of patients might benefit from a closer CMV monitoring, and hence, earlier intervention if needed, especially after discontinuation of prophylaxis.


Subject(s)
Cytomegalovirus Infections , Hematopoietic Stem Cell Transplantation , Humans , Retrospective Studies , Transplantation, Homologous/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Cytomegalovirus/physiology , Antibodies, Viral , Immunoglobulin G
12.
HIV Med ; 24(7): 785-793, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36883641

ABSTRACT

OBJECTIVES: Our objective was to assess immune responses and their influencing factors in people living with HIV after messenger RNA (mRNA)-based COVID-19 booster vaccination (third dose). METHODS: This was a retrospective cohort study of people living with HIV who received booster vaccination with BNT-162b2 or mRNA-1273 between October 2021 and January 2022. We assessed anti-spike receptor-binding domain (RBD) immunoglobulin G (IgG), virus neutralizing activity (VNA) titres reported as 100% inhibitory dilution (ID100 ), and T-cell response (using interferon-gamma-release-assay [IGRA]) at baseline and quarterly follow-up visits. Patients with reported COVID-19 during follow-up were excluded. Predictors of serological immune response were analyzed using multivariate regression models. RESULTS: Of 84 people living with HIV who received an mRNA-based booster vaccination, 76 were eligible for analysis. Participants were on effective antiretroviral therapy (ART) and had a median of 670 CD4+ cells/µL (interquartile range [IQR] 540-850). Following booster vaccination, median anti-spike RBD IgG increased by 705.2 binding antibody units per millilitre (BAU/mL) and median VNA titres increased by 1000 ID100 at the follow-up assessment (median 13 weeks later). Multivariate regression revealed that time since second vaccination was a predictor of stronger serological responses (p < 0.0001). No association was found for other factors, including CD4+ status, choice of mRNA vaccine, or concomitant influenza vaccination. In total, 45 patients (59%) had a reactive baseline IGRA, of whom two lost reactivity during follow-up. Of 31 patients (41%) with non-reactive baseline IGRA, 17 (55%) converted to reactive and seven (23%) remained unchanged following booster vaccination. CONCLUSIONS: People living with HIV with ≥500 CD4+ cells/µL showed favourable immune responses to mRNA-based COVID-19 booster vaccination. A longer time (up to 29 weeks) since second vaccination was associated with higher serological responses, whereas choice of mRNA vaccine or concomitant influenza vaccination had no impact.


Subject(s)
COVID-19 , HIV Infections , Influenza, Human , Humans , Retrospective Studies , COVID-19/prevention & control , Vaccination , RNA, Messenger , Immunity , Immunoglobulin G , Antibodies, Viral
13.
Pediatr Nephrol ; 38(6): 1935-1948, 2023 06.
Article in English | MEDLINE | ID: mdl-36409368

ABSTRACT

BACKGROUND: Data on humoral immune response to standard COVID-19 vaccination are scarce in adolescent patients and lacking for children below 12 years of age with chronic kidney disease including kidney transplant recipients. METHODS: We therefore investigated in this retrospective two-center study (DRKS00024668; registered 23.03.2021) the humoral immune response to a standard two-dose mRNA vaccine regimen in 123 CKD patients aged 5-30 years. A live-virus assay was used to assess the serum neutralizing activity against the SARS-CoV-2 omicron (BA.1) variant. RESULTS: Children aged 5-11 years had a comparable rate and degree of immune response to adolescents despite lower vaccine doses (10 µg vs. 30 µg BNT162b2). Treatment with two (odds ratio 9.24) or three or more (odds ratio 17.07) immunosuppressants was an independent risk factor for nonresponse. The immune response differed significantly among three patient cohorts: 48 of 77 (62.3%) kidney transplant recipients, 21 of 26 (80.8%) patients on immunosuppressive therapy, and 19 of 20 (95.0%) patients with chronic kidney disease without immunosuppressive therapy responded. In the kidney transplant recipients, immunosuppressive regimens comprising mycophenolate mofetil, an eGFR of < 60 mL/min/1.73 m2, and female sex were independent risk factors for nonresponse. Two of 18 (11.1%) and 8 of 16 (50.0%) patients with an anti-S1-RBD IgG of 100-1411 and > 1411 BAU/mL, respectively, showed a neutralization activity against the omicron variant. CONCLUSION: A standard mRNA vaccine regimen in immunosuppressed children and adolescents with kidney disease elicits an attenuated humoral immune response with effective live virus neutralization against the omicron variant in approximately 10% of the patients, underlying the need for omicron-adapted vaccination. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
COVID-19 , Immunity, Humoral , Adolescent , Humans , Child , Female , Young Adult , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Retrospective Studies , SARS-CoV-2 , Vaccination , Immunosuppressive Agents/therapeutic use , RNA, Messenger , Antibodies, Viral
15.
Viruses ; 14(12)2022 11 26.
Article in English | MEDLINE | ID: mdl-36560648

ABSTRACT

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is a serious hazard for hemodialysis (HD) patients and kidney transplant (KTX) recipients as they suffer from an impaired immune response to SARS-CoV-2 vaccination. In addition, a definition of SARS-CoV-2 IgG titer that indicates a sufficient immune response, especially against new omicron variants, is urgently needed. In the present study, the immune response to either a third or a fourth dose of a mRNA vaccine was investigated in 309 dialysis and 36 KTX patients. SARS-CoV-2 IgG titer thresholds indicating neutralizing activity against wild type (WT) and the omicron variant BA.1 were quantified. After four vaccine doses, a high-neutralizing activity against WT was evidenced in HD patients, whereas the neutralizing rate against BA.1 was significant lower. Concerning KTX recipients, humoral and cellular immune responses after a third vaccination were still highly impaired. This calls for modified omicron-targeting vaccines.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Immunoglobulin G , Antibodies, Viral , Renal Dialysis , Transplant Recipients , Immunity , Antibodies, Neutralizing
16.
RMD Open ; 8(2)2022 10.
Article in English | MEDLINE | ID: mdl-36216409

ABSTRACT

BACKGROUND: Several health authorities recommend a third (booster) vaccination to protect patients with rheumatic and musculoskeletal diseases from severe COVID-19. Methotrexate has been shown to reduce the efficacy of the first and second dose of SARS-CoV-2 mRNA vaccines. So far, it remains unknown how concomitant methotrexate affects the efficacy of a COVID-19 booster vaccination. METHODS: We compared the humoral immune response to SARS-CoV-2 vaccination in 136 patients with rheumatoid arthritis (RA) treated with methotrexate and/or biological or targeted synthetic (b/tsDMARDs). IgG targeting the receptor binding domain (RBD) of SARS-CoV-2 spike protein was measured at a median of 52.5 (range 2-147) days after a third dose of the SARS-CoV-2 mRNA vaccines BNT162b2 or mRNA-1273. RESULTS: Anti-RBD IgG was significantly reduced in elderly patients receiving concomitant treatment with methotrexate as compared with elderly patients receiving monotherapy with b/tsDMARDs or methotrexate (64.8 (20.8, 600.3) binding antibody units per mL (BAU/mL) vs 1106.0 (526.3, 4965.2) BAU/mL vs 1743.8 (734.5, 6779.6) BAU/mL, median (IQR), p<0.001, Kruskal-Wallis test). In younger patients (< 64.5 years), concomitant methotrexate had no significant impact on the humoral immune response. CONCLUSIONS: Concomitant methotrexate increases the risk of an insufficient humoral immune response to SARS-CoV-2 vaccination in elderly patients with RA. Pausing methotrexate during the third vaccination period may be considered for this group of patients.


Subject(s)
Arthritis, Rheumatoid , COVID-19 Vaccines , COVID-19 , Immunity, Humoral , Methotrexate , Aged , Antibodies, Viral , Arthritis, Rheumatoid/drug therapy , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunoglobulin G , Methotrexate/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
17.
Cochrane Database Syst Rev ; 8: CD015021, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35943061

ABSTRACT

BACKGROUND: High efficacy in terms of protection from severe COVID-19 has been demonstrated for several SARS-CoV-2 vaccines. However, patients with compromised immune status develop a weaker and less stable immune response to vaccination. Strong immune response may not always translate into clinical benefit, therefore it is important to synthesise evidence on modified schemes and types of vaccination in these population subgroups for guiding health decisions. As the literature on COVID-19 vaccines continues to expand, we aimed to scope the literature on multiple subgroups to subsequently decide on the most relevant research questions to be answered by systematic reviews. OBJECTIVES: To provide an overview of the availability of existing literature on immune response and long-term clinical outcomes after COVID-19 vaccination, and to map this evidence according to the examined populations, specific vaccines, immunity parameters, and their way of determining relevant long-term outcomes and the availability of mapping between immune reactivity and relevant outcomes. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, the Web of Science Core Collection, and the World Health Organization COVID-19 Global literature on coronavirus disease on 6 December 2021.  SELECTION CRITERIA: We included studies that published results on immunity outcomes after vaccination with BNT162b2, mRNA-1273, AZD1222, Ad26.COV2.S, Sputnik V or Sputnik Light, BBIBP-CorV, or CoronaVac on predefined vulnerable subgroups such as people with malignancies, transplant recipients, people undergoing renal replacement therapy, and people with immune disorders, as well as pregnant and breastfeeding women, and children. We included studies if they had at least 100 participants (not considering healthy control groups); we excluded case studies and case series. DATA COLLECTION AND ANALYSIS: We extracted data independently and in duplicate onto an online data extraction form. Data were represented as tables and as online maps to show the frequency of studies for each item. We mapped the data according to study design, country of participant origin, patient comorbidity subgroup, intervention, outcome domains (clinical, safety, immunogenicity), and outcomes.  MAIN RESULTS: Out of 25,452 identified records, 318 studies with a total of more than 5 million participants met our eligibility criteria and were included in the review. Participants were recruited mainly from high-income countries between January 2020 and 31 October 2021 (282/318); the majority of studies included adult participants (297/318).  Haematological malignancies were the most commonly examined comorbidity group (N = 54), followed by solid tumours (N = 47), dialysis (N = 48), kidney transplant (N = 43), and rheumatic diseases (N = 28, 17, and 15 for mixed diseases, multiple sclerosis, and inflammatory bowel disease, respectively). Thirty-one studies included pregnant or breastfeeding women. The most commonly administered vaccine was BNT162b2 (N = 283), followed by mRNA-1273 (N = 153), AZD1222 (N = 66), Ad26.COV2.S (N = 42), BBIBP-CorV (N = 15), CoronaVac (N = 14), and Sputnik V (N = 5; no studies were identified for Sputnik Light). Most studies reported outcomes after regular vaccination scheme.  The majority of studies focused on immunogenicity outcomes, especially seroconversion based on binding antibody measurements and immunoglobulin G (IgG) titres (N = 179 and 175, respectively). Adverse events and serious adverse events were reported in 126 and 54 studies, whilst SARS-CoV-2 infection irrespective of severity was reported in 80 studies. Mortality due to SARS-CoV-2 infection was reported in 36 studies. Please refer to our evidence gap maps for more detailed information. AUTHORS' CONCLUSIONS: Up to 6 December 2021, the majority of studies examined data on mRNA vaccines administered as standard vaccination schemes (two doses approximately four to eight weeks apart) that report on immunogenicity parameters or adverse events. Clinical outcomes were less commonly reported, and if so, were often reported as a secondary outcome observed in seroconversion or immunoglobulin titre studies. As informed by this scoping review, two effectiveness reviews (on haematological malignancies and kidney transplant recipients) are currently being conducted.


Subject(s)
COVID-19 , Hematologic Neoplasms , Vaccines , Ad26COVS1 , Adult , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Child , Female , Humans , Pregnancy , SARS-CoV-2 , Vaccination
18.
Microorganisms ; 10(7)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35889028

ABSTRACT

Due to superior sensitivity compared to traditional microscopy, real-time PCR has been well established for the diagnosis of Giardia duodenalis in human stool samples. In this study, screening real-time PCRs for different target genes of G. duodenalis, i.e., the 18S rRNA gene, the gdh (glutamate dehydrogenase) gene and the bg (beta-giardin) gene, were comparatively assessed next to various real-time PCR assays for the discrimination of the assemblages A and B of G. duodenalis targeting the bg gene with and without locked nucleic acid-containing probes as well as the tpi (triose phosphate isomerase) gene. The screening PCRs were assessed by including 872 non-preselected samples with a high pre-test probability for G. duodenalis in the statistical analysis, while 53 G. duodenalis-positive samples as indicated by at least two screening PCRs were finally included in the assessment of the assemblage-specific PCRs. For the screening PCRs, sensitivity estimated with latent class analysis (LCA) ranged from 17.5% to 100%, specificity from 92.3% to 100% with an accuracy-adjusted prevalence of 7.2% for G. duodenalis within the non-preselected sample collection. In detail, sensitivity and specificity were 100% and 100% for the 18S rRNA gene-specific assay, 17.5% and 92.3% for the gdh gene-specific assay, and 31.7% and 100% for the bg gene-specific assay, respectively. Agreement kappa was slight with only 15.5%. For the assemblage-specific PCRs, estimated sensitivity ranged from 82.1% to 100%, specificity from 84.0% to 100% with nearly perfect agreement kappa of 90.1% for assemblage A and yet substantial agreement of 74.8% for assemblage B. In detail for assemblage A, sensitivity and specificity were 100% and 100% for the bg gene-specific assay without locked nucleic acids (LNA) as well as 100% and 97.8% for both the bg gene-specific assay with LNA and the tri gene-specific assay, respectively. For assemblage B, sensitivity and specificity were 100% and 100% for the bg gene-specific assay without LNA, 96.4% and 84.0% for the bg gene-specific assay with LNA, and 82.1% and 100% for the tri gene-specific assay, respectively. Within the assessed sample collection, the observed proportion comprised 15.1% G. duodenalis assemblage A, 52.8% G. duodenalis assemblage B and 32.1% non-resolved assemblages. Only little differences were observed regarding the cycle threshold (Ct) values when comparing the assays. In conclusion, best diagnostic accuracy was shown for an 18S rRNA gene-specific screening assay for G. duodenalis and for a differentiation assay discriminating the G. duodenalis assemblages A and B by targeting the bg gene with probes not containing locked nucleic acids. By adding additional highly specific competitor assays for confirmation testing, diagnostic specificity can be further increased on the cost of sensitivity if optimized specificity is desired.

19.
Microorganisms ; 10(7)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35889126

ABSTRACT

Background: There is a paucity of information on the contemporary burden, disease patterns, and immunological profile of people living with HIV who are co-infected with C. cayetanensis in the post-antiretroviral therapy era. Methods: For this cross-sectional study, stool samples of 640 HIV-positive and 83 HIV-negative individuals in Ghana were tested for C. cayetanensis. Additionally, sociodemographic parameters, clinical symptoms, medical drug intake, and immunological parameters were assessed. Results: The prevalence of C. cayetanensis was 8.75% (n = 56) in HIV-positive and 1.20% (n = 1) in HIV-negative participants (p = 0.015). Within the group of HIV-positive participants, the prevalence reached 13.6% in patients with CD4+ T cell counts below 200 cells/µl. Frequencies of the clinical manifestations of weight loss and diarrheal disease were significantly higher in patients with C. cayetanensis compared to those without co-infection (36.36% vs. 22.59%, p = 0.034 and 20.00% vs. 4.90%, p < 0.001, respectively). The expression of markers of immune activation and exhaustion of T lymphocyte sub-populations was significantly elevated in patients colonized with C. cayetanensis. Conclusions: In the modern post-combined antiretroviral therapy (cART) era, the acquisition of C. cayetanensis among PLWH in Ghana is driven largely by the immunosuppression profile characterized by high expression of markers of immune activation and immune exhaustion.

20.
Eur J Neurol ; 29(11): 3380-3388, 2022 11.
Article in English | MEDLINE | ID: mdl-35842740

ABSTRACT

BACKGROUND AND PURPOSE: This study assessed the prevalence of anti-SARS-CoV-2 antibodies in therapeutic immunoglobulin and their impact on serological response to COVID-19 mRNA vaccine in patients with intravenous immunoglobulin (IVIg)-treated chronic immune neuropathies. METHODS: Forty-six samples of different brands or lots of IVIg or subcutaneous IgG were analyzed for anti-SARS-CoV-2 IgG using enzyme-linked immunosorbent assay and chemiluminescent microparticle immunoassay. Blood sera from 16 patients with immune neuropathies were prospectively analyzed for anti-SARS-CoV-2 IgA, IgG, and IgM before and 1 week after IVIg infusion subsequent to consecutive COVID-19 mRNA vaccine doses and after 12 weeks. These were compared to 42 healthy subjects. RESULTS: Twenty-four (52%) therapeutic immunoglobulin samples contained anti-SARS-CoV-2 IgG. All patients with immune neuropathies (mean age = 65 ± 16 years, 25% female) were positive for anti-SARS-CoV-2 IgG after COVID-19 vaccination. Anti-SARS-CoV-2 IgA titers significantly decreased 12-14 weeks after vaccination (p = 0.02), whereas IgG titers remained stable (p = 0.2). IVIg did not significantly reduce intraindividual anti-SARS-CoV-2 IgA/IgG serum titers in immune neuropathies (p = 0.69). IVIg-derived anti-SARS-CoV-2 IgG did not alter serum anti-SARS-CoV-2 IgG decrease after IVIg administration (p = 0.67). CONCLUSIONS: Our study indicates that IVIg does not impair the antibody response to COVID-19 mRNA vaccine in a short-term observation, when administered a minimum of 2 weeks after each vaccine dose. The infusion of current IVIg preparations that contain anti-SARS-CoV-2 IgG does not significantly alter serum anti-SARS-CoV-2 IgG titers.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Aged , Aged, 80 and over , Antibodies, Viral , Antibody Formation , COVID-19 Vaccines , Female , Humans , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Immunoglobulins, Intravenous/therapeutic use , Male , Middle Aged , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL
...