Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 289: 120550, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38382861

ABSTRACT

Visual crowding is the difficulty in identifying an object when surrounded by neighbouring flankers, representing a bottleneck for object perception. Crowding arises not only from the activity of visual areas but also from parietal areas and fronto-parietal network activity. Parietal areas would provide the dorsal-to-ventral guidance for object identification and the fronto-parietal network would modulate the attentional resolution. Several studies highlighted the relevance of beta oscillations (15-25 Hz) in these areas for visual crowding and other connatural visual phenomena. In the present study, we investigated the differential contribution of beta oscillations in the parietal cortex and fronto-parietal network in the resolution of visual crowding. During a crowding task with letter stimuli, high-definition transcranial Alternating Current Stimulation (tACS) in the beta band (18 Hz) was delivered bilaterally on parietal sites, on the right fronto-parietal network, and in a sham regime. Resting-state EEG was recorded before and after stimulation to measure tACS-induced aftereffects. The influence of crowding was reduced only when tACS was delivered bilaterally on parietal sites. In this condition, beta power was reduced after the stimulation. Furthermore, the magnitude of tACS-induced aftereffects varied as a function of individual differences in beta oscillations. Results corroborate the link between parietal beta oscillations and visual crowding, providing fundamental insights on brain rhythms underlying the dorsal-to-ventral guidance in visual perception and suggesting that beta tACS can induce plastic changes in these areas. Remarkably, these findings open new possibilities for neuromodulatory interventions for disorders characterised by abnormal crowding, such as dyslexia.


Subject(s)
Parietal Lobe , Transcranial Direct Current Stimulation , Humans , Visual Perception/physiology , Transcranial Direct Current Stimulation/methods
2.
Front Psychol ; 14: 1296483, 2023.
Article in English | MEDLINE | ID: mdl-38155693

ABSTRACT

Neural oscillations in alpha (8-12 Hz) and beta (13-30 Hz) frequency bands are thought to reflect feedback/reentrant loops and large-scale cortical interactions. In the last decades a main effort has been made in linking perception with alpha-band oscillations, with converging evidence showing that alpha oscillations have a key role in the temporal and featural binding of visual input, configuring the alpha rhythm a key determinant of conscious visual experience. Less attention has been historically dedicated to link beta oscillations and visual processing. Nonetheless, increasing studies report that task conditions that require to segregate/integrate stimuli in space, to disentangle local/global shapes, to spatially reorganize visual inputs, and to achieve motion perception or form-motion integration, rely on the activity of beta oscillations, with a main hub in parietal areas. In the present review, we summarize the evidence linking oscillations within the beta band and visual perception. We propose that beta oscillations represent a neural code that supports the functionality of the magnocellular-dorsal (M-D) visual pathway, serving as a fast primary neural code to exert top-down influences on the slower parvocellular-ventral visual pathway activity. Such M-D-related beta activity is proposed to act mainly pre-consciously, providing the spatial coordinates of vision and guiding the conscious extraction of objects identity that are achieved with slower alpha rhythms in ventral areas. Finally, within this new theoretical framework, we discuss the potential role of M-D-related beta oscillations in visuo-spatial attention, oculo-motor behavior and reading (dis)abilities.

3.
Biomedicines ; 11(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37371702

ABSTRACT

Developmental Dyslexia (DD) is a neurobiological condition affecting the ability to read fluently and/or accurately. Analyzing resting-state electroencephalographic (EEG) activity in DD may provide a deeper characterization of the underlying pathophysiology and possible biomarkers. So far, studies investigating resting-state activity in DD provided limited evidence and did not consider the aperiodic component of the power spectrum. In the present study, adults with (n = 26) and without DD (n = 31) underwent a reading skills assessment and resting-state EEG to investigate potential alterations in aperiodic activity, their impact on the periodic counterpart and reading performance. In parieto-occipital channels, DD participants showed a significantly different aperiodic activity as indexed by a flatter and lower power spectrum. These aperiodic measures were significantly related to text reading time, suggesting a link with individual differences in reading difficulties. In the beta band, the DD group showed significantly decreased aperiodic-adjusted power compared to typical readers, which was significantly correlated to word reading accuracy. Overall, here we provide evidence showing alterations of the endogenous aperiodic activity in DD participants consistently with the increased neural noise hypothesis. In addition, we confirm alterations of endogenous beta rhythms, which are discussed in terms of their potential link with magnocellular-dorsal stream deficit.

4.
J Exp Psychol Hum Percept Perform ; 49(4): 549-565, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37184938

ABSTRACT

When recognizing spoken words, listeners are confronted by variability in the speech signal caused by talker differences. Previous research has focused on segmental talker variability; less is known about how suprasegmental variability is handled. Here we investigated the use of perceptual learning to deal with between-talker differences in lexical stress. Two groups of participants heard Dutch minimal stress pairs (e.g., VOORnaam vs. voorNAAM, "first name" vs. "respectable") spoken by two male talkers. Group 1 heard Talker 1 use only F0 to signal stress (intensity and duration values were ambiguous), while Talker 2 used only intensity (F0 and duration were ambiguous). Group 2 heard the reverse talker-cue mappings. After training, participants were tested on words from both talkers containing conflicting stress cues ("mixed items"; e.g., one spoken by Talker 1 with F0 signaling initial stress and intensity signaling final stress). We found that listeners used previously learned information about which talker used which cue to interpret the mixed items. For example, the mixed item described above tended to be interpreted as having initial stress by Group 1 but as having final stress by Group 2. This demonstrates that listeners learn how individual talkers signal stress and use that knowledge in spoken-word recognition. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Cues , Speech Perception , Humans , Male , Learning , Speech , Language
5.
Eur J Neurosci ; 56(3): 4086-4106, 2022 08.
Article in English | MEDLINE | ID: mdl-35673798

ABSTRACT

The present study investigated whether listeners can form abstract voice representations while ignoring constantly changing phonological information and if they can use the resulting information to facilitate voice change detection. Further, the study aimed at understanding whether the use of abstraction is restricted to the speech domain or can be deployed also in non-speech contexts. We ran an electroencephalogram (EEG) experiment including one passive and one active oddball task, each featuring a speech and a rotated speech condition. In the speech condition, participants heard constantly changing vowels uttered by a male speaker (standard stimuli) which were infrequently replaced by vowels uttered by a female speaker with higher pitch (deviant stimuli). In the rotated speech condition, participants heard rotated vowels, in which the natural formant structure of speech was disrupted. In the passive task, the mismatch negativity was elicited after the presentation of the deviant voice in both conditions, indicating that listeners could successfully group together different stimuli into a formant-invariant voice representation. In the active task, participants showed shorter reaction times (RTs), higher accuracy and a larger P3b in the speech condition with respect to the rotated speech condition. Results showed that whereas at a pre-attentive level the cognitive system can track pitch regularities while presumably ignoring constantly changing formant information both in speech and in rotated speech, at an attentive level the use of such information is facilitated for speech. This facilitation was also testified by a stronger synchronisation in the theta band (4-7 Hz), potentially pointing towards differences in encoding/retrieval processes.


Subject(s)
Speech Perception , Acoustic Stimulation/methods , Attention , Female , Humans , Male , Reaction Time , Speech
6.
Brain Lang ; 227: 105085, 2022 04.
Article in English | MEDLINE | ID: mdl-35150981

ABSTRACT

This study aims to shed light on the issue whether familiar allophonic variation is encoded in word representations. Both Italian speakers born in Trentino and speakers born in the Central-Southern regions of Italy took part in the experiment. We tested the MMN elicited by the same word encompassing two different allophones, one of which was more familiar to one group of participants than to the other, depending on their regional variety of Italian. The Trentino group showed an enhanced MMN for the word embedding the familiar variant while Central-Southern speakers showed no difference. The amplitude of the MMN for the unfamiliar word variant in Trentino speakers showed an inverse correlation with the passive exposure to the Trentino dialect. We conclude that words embedding familiar and unfamiliar allophones are differently represented in the brain of native speakers of regional language and the degree of differentiation is modulated by individual experience.


Subject(s)
Linguistics , Speech Perception , Brain , Electroencephalography , Humans , Italy , Language , Recognition, Psychology
7.
Brain Lang ; 220: 104981, 2021 09.
Article in English | MEDLINE | ID: mdl-34166941

ABSTRACT

Linguistic and vocal information are thought to be differentially processed since the early stages of speech perception, but it remains unclear if this differentiation also concerns automatic processes of memory retrieval. The aim of this ERP study was to compare the automatic retrieval processes for newly learned voices vs phonemes. In a longitudinal experiment, two groups of participants were trained in learning either a new phoneme or a new voice. The MMN elicited by the presentation of the two was measured before and after the training. An enhanced MMN was elicited by the presentation of the learned phoneme, reflecting the activation of an automatic memory retrieval process. Instead, a reduced MMN was elicited by the learned voice, indicating that the voice was perceived as a typical member of the learned voice identity. This suggests that the automatic processes that retrieve linguistic and vocal information are differently affected by experience.


Subject(s)
Speech Perception , Voice , Acoustic Stimulation , Electroencephalography , Evoked Potentials, Auditory , Humans , Learning , Memory
SELECTION OF CITATIONS
SEARCH DETAIL
...