Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Commun Chem ; 7(1): 32, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360897

ABSTRACT

Electronic Energy Transfer (EET) between chromophores is fundamental in many natural light-harvesting complexes, serving as a critical step for solar energy funneling in photosynthetic plants and bacteria. The complicated role of the environment in mediating this process in natural architectures has been addressed by recent scanning tunneling microscope experiments involving EET between two molecules supported on a solid substrate. These measurements demonstrated that EET in such conditions has peculiar features, such as a steep dependence on the donor-acceptor distance, reminiscent of a short-range mechanism more than of a Förster-like process. By using state of the art hybrid ab initio/electromagnetic modeling, here we provide a comprehensive theoretical analysis of tip-enhanced EET. In particular, we show that this process can be understood as a complex interplay of electromagnetic-based molecular plasmonic processes, whose result may effectively mimic short range effects. Therefore, the established identification of an exponential decay with Dexter-like effects does not hold for tip-enhanced EET, and accurate electromagnetic modeling is needed to identify the EET mechanism.

2.
J Chem Theory Comput ; 19(20): 7056-7076, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37769271

ABSTRACT

The power of quantum chemistry to predict the ground and excited state properties of complex chemical systems has driven the development of computational quantum chemistry software, integrating advances in theory, applied mathematics, and computer science. The emergence of new computational paradigms associated with exascale technologies also poses significant challenges that require a flexible forward strategy to take full advantage of existing and forthcoming computational resources. In this context, the sustainability and interoperability of computational chemistry software development are among the most pressing issues. In this perspective, we discuss software infrastructure needs and investments with an eye to fully utilize exascale resources and provide unique computational tools for next-generation science problems and scientific discoveries.

3.
Phys Chem Chem Phys ; 24(37): 22513-22522, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36106845

ABSTRACT

The G-quadruplex is a fascinating nucleic acid motif with implications in biology, medicine, and nanotechnologies. G-quadruplexes can form in the telomeres at the edges of chromosomes and in other guanine-rich regions of the genome. They can also be engineered for exploitation as biological materials for nanodevices. Their higher stiffness and higher charge transfer rates make them better candidates in nanodevices than duplex DNA. For the development of molecular nanowires, it is important to optimize electron transport along the wire axis. One powerful basis to do so is by manipulating the structure, based on known effects that structural changes have on electron transport. Here, we investigate such effects, by a combination of classical simulations of the structure and dynamics and quantum calculations of electronic couplings. We find that this structure-function relationship is complex. A single helix shape parameter alone does not embody such complexity, but rather a combination of distances and angles between stacked bases influences charge transfer efficiency. By analyzing linear combinations of shape descriptors for different topologies, we identify the structural features that most affect charge transfer efficiency. We discuss the transferability of the proposed model and the limiting effects of inherent flexibility.


Subject(s)
G-Quadruplexes , DNA/chemistry , Electronics , Guanine/chemistry , Nucleic Acid Conformation , Telomere
4.
Materials (Basel) ; 14(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34501020

ABSTRACT

To describe the molecular electronic structure of nucleic acid bases and other heterocycles, we employ the Linear Combination of Atomic Orbitals (LCAO) method, considering the molecular wave function as a linear combination of all valence orbitals, i.e., 2s, 2px, 2py, 2pz orbitals for C, N, and O atoms and 1s orbital for H atoms. Regarding the diagonal matrix elements (also known as on-site energies), we introduce a novel parameterization. For the non-diagonal matrix elements referring to neighboring atoms, we employ the Slater-Koster two-center interaction transfer integrals. We use Harrison-type expressions with factors slightly modified relative to the original. We compare our LCAO predictions for the ionization and excitation energies of heterocycles with those obtained from Ionization Potential Equation of Motion Coupled Cluster with Singles and Doubles (IP-EOMCCSD)/aug-cc-pVDZ level of theory and Completely Normalized Equation of Motion Coupled Cluster with Singles, Doubles, and non-iterative Triples (CR-EOMCCSD(T))/aug-cc-pVDZ level of theory, respectively, (vertical values), as well as with available experimental data. Similarly, we calculate the transfer integrals between subsequent base pairs, to be used for a Tight-Binding (TB) wire model description of charge transfer and transport along ideal or deformed B-DNA. Taking into account all valence orbitals, we are in the position to treat deflection from the planar geometry, e.g., DNA structural variability, a task impossible for the plane Hückel approach (i.e., using only 2pz orbitals). We show the effects of structural deformations utilizing a 20mer evolved by Molecular Dynamics.

5.
J Phys Chem B ; 125(16): 3986-4003, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33857373

ABSTRACT

Hole transfer along the axis of duplex DNA has been the focus of physical chemistry research for decades, with implications in diverse fields, from nanotechnology to cell oxidative damage. Computational approaches are particularly amenable for this problem, to complement experimental data for interpretation of transfer mechanisms. To be predictive, computational results need to account for the inherent mobility of biological molecules during the time frame of experimental measurements. Here, we address the structural variability of B-DNA and its effects on hole transfer in a combined molecular dynamics (MD) and real-time time-dependent density functional theory (RT-TDDFT) study. Our results show that quantities that characterize the charge transfer process, such as the time-dependent dipole moment and hole population at a specific site, are sensitive to structural changes that occur on the nanosecond time scale. We extend the range of physical properties for which such a correlation has been observed, further establishing the fact that quantitative computational data on charge transfer properties should include statistical averages. Furthermore, we use the RT-TDDFT results to assess an efficient tight-binding method suitable for high-throughput predictions. We demonstrate that charge transfer, although affected by structural variability, on average, remains strong in AA and GG dimers.


Subject(s)
DNA, B-Form , Molecular Dynamics Simulation , DNA , Density Functional Theory
6.
Phys Chem Chem Phys ; 22(46): 27332-27337, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33231234

ABSTRACT

Quantum annealers have grown in complexity to the point that quantum computations involving a few thousand qubits are now possible. In this paper, with the intentions to show the feasibility of quantum annealing to tackle problems of physical relevance, we used a simple model, compatible with the capability of current quantum annealers, to study the relative stability of graphene vacancy defects. By mapping the crucial interactions that dominate carbon-vacancy interchange onto a quadratic unconstrained binary optimization problem, our approach exploits the ground state as well as the excited states found by the quantum annealer to extract all the possible arrangements of multiple defects on the graphene sheet together with their relative formation energies. This approach reproduces known results and provides a stepping stone towards applications of quantum annealing to problems of physical-chemical interest.

7.
Biochemistry ; 59(48): 4523-4532, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33205945

ABSTRACT

We demonstrate here that the α subunit C-terminal domain of Escherichia coli RNA polymerase (αCTD) recognizes the upstream promoter (UP) DNA element via its characteristic minor groove shape and electrostatic potential. In two compositionally distinct crystallized assemblies, a pair of αCTD subunits bind in tandem to the UP element consensus A-tract that is 6 bp in length (A6-tract), each with their arginine 265 guanidinium group inserted into the minor groove. The A6-tract minor groove is significantly narrowed in these crystal structures, as well as in computationally predicted structures of free and bound DNA duplexes derived by Monte Carlo and molecular dynamics simulations, respectively. The negative electrostatic potential of free A6-tract DNA is substantially enhanced compared to that of generic DNA. Shortening the A-tract by 1 bp is shown to "knock out" binding of the second αCTD through widening of the minor groove. Furthermore, in computationally derived structures with arginine 265 mutated to alanine in either αCTD, either with or without the "knockout" DNA mutation, contact with the DNA is perturbed, highlighting the importance of arginine 265 in achieving αCTD-DNA binding. These results demonstrate that the importance of the DNA shape in sequence-dependent recognition of DNA by RNA polymerase is comparable to that of certain transcription factors.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Cyclic AMP Receptor Protein/chemistry , Cyclic AMP Receptor Protein/genetics , Cyclic AMP Receptor Protein/metabolism , DNA, Bacterial/genetics , DNA-Directed RNA Polymerases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Gene Knockout Techniques , Genes, Bacterial , Models, Molecular , Mutation , Nucleic Acid Conformation , Promoter Regions, Genetic , Protein Domains , Static Electricity
8.
Nucleic Acids Res ; 48(15): 8529-8544, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32738045

ABSTRACT

Myocyte enhancer factor-2B (MEF2B) has the unique capability of binding to its DNA target sites with a degenerate motif, while still functioning as a gene-specific transcriptional regulator. Identifying its DNA targets is crucial given regulatory roles exerted by members of the MEF2 family and MEF2B's involvement in B-cell lymphoma. Analyzing structural data and SELEX-seq experimental results, we deduced the DNA sequence and shape determinants of MEF2B target sites on a high-throughput basis in vitro for wild-type and mutant proteins. Quantitative modeling of MEF2B binding affinities and computational simulations exposed the DNA readout mechanisms of MEF2B. The resulting binding signature of MEF2B revealed distinct intricacies of DNA recognition compared to other transcription factors. MEF2B uses base readout at its half-sites combined with shape readout at the center of its degenerate motif, where A-tract polarity dictates nuances of binding. The predominant role of shape readout at the center of the core motif, with most contacts formed in the minor groove, differs from previously observed protein-DNA readout modes. MEF2B, therefore, represents a unique protein for studies of the role of DNA shape in achieving binding specificity. MEF2B-DNA recognition mechanisms are likely representative for other members of the MEF2 family.


Subject(s)
DNA-Binding Proteins/ultrastructure , DNA/ultrastructure , Multiprotein Complexes/ultrastructure , Amino Acid Sequence/genetics , Binding Sites/genetics , DNA/genetics , DNA-Binding Proteins/chemistry , Humans , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , MADS Domain Proteins/genetics , MADS Domain Proteins/ultrastructure , MEF2 Transcription Factors/chemistry , MEF2 Transcription Factors/ultrastructure , Multiprotein Complexes/genetics , Nucleic Acid Conformation , Nucleotide Motifs/genetics , Protein Binding/genetics
9.
J Phys Chem B ; 124(11): 2168-2179, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32079396

ABSTRACT

Class 2 CRISPR (clustered regularly interspaced short palindromic repeats) systems offer a unique protocol for genome editing in eukaryotic cells. The nuclease activity of Cas9 has been harnessed to perform precise genome editing by creating double-strand breaks. However, the nuclease activity of Cas9 can be triggered when there is imperfect complementarity between the RNA guide sequence and an off-target genomic site, which is a major limitation of the CRISPR technique for practical applications. Hence, understanding the binding mechanisms in CRISPR/Cas9 for predicting ways to increase cleavage specificity is a timely research target. One way to understand and tune the binding strength is to study wild-type and mutant Cas9, in complex with a guide RNA and a target DNA. We have performed classical all-atom MD simulations over a cumulative time scale of 13.5 µs of CRISPR/Cas9 ternary complexes with the wild-type Cas9 from Streptococcus pyogenes and three of its mutants: K855A, H982A, and the combination K855A+H982A, selected from the outcome of experimental work. Our results reveal significant structural impact of the mutations, with implications for specificity. We find that the "unwound" part of the nontarget DNA strand exhibits enhanced flexibility in complexes with Cas9 mutants and tries to move away from the HNH/RuvC interface, where it is otherwise stabilized by electrostatic couplings in the wild-type complex. Our findings refine an electrostatic model by which cleavage specificity can be optimized through protein mutations.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , CRISPR-Cas Systems/genetics , DNA/genetics , DNA Cleavage , Molecular Dynamics Simulation , Mutation
10.
Chem ; 5(1): 122-137, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30714018

ABSTRACT

Recent experiments suggest that DNA-mediated charge transport might enable signaling between the [4Fe4S] clusters in the C-terminal domains of human DNA primase and polymerase α, as well as the signaling between other replication and repair high-potential [4Fe4S] proteins. Our theoretical study demonstrates that the redox signaling cannot be accomplished exclusively by DNA-mediated charge transport because part of the charge transfer chain has an unfavorable free energy profile. We show that hole or excess electron transfer between a [4Fe4S] cluster and a nucleic acid duplex through a protein medium can occur within microseconds in one direction, while it is kinetically hindered in the opposite direction. We present a set of signaling mechanisms that may occur with the assistance of oxidants or reductants, using the allowed charge transfer processes. These mechanisms would enable the coordinated action of [4Fe4S] proteins on DNA, engaging the [4Fe4S] oxidation state dependence of the protein-DNA binding affinity.

11.
Langmuir ; 34(49): 14749-14756, 2018 12 11.
Article in English | MEDLINE | ID: mdl-29723478

ABSTRACT

The solution environment is of fundamental importance in the adsorption of molecules on surfaces, a process that is strongly affected by the capability of the adsorbate to disrupt the hydration layer above the surface. Here we disclose how the presence of interface water influences the adsorption mechanism of DNA nucleobases on a gold surface. By means of metadynamics simulations, we describe the distinctive features of a complex free-energy landscape for each base, which manifests activation barriers for the adsorption process. We characterize the different pathways that allow each nucleobase to overcome the barriers and be adsorbed on the surface, discussing how they influence the kinetics of adsorption of single-stranded DNA oligomers with homogeneous sequences. Our findings offer a rationale as to why experimental data on the adsorption of single-stranded homo-oligonucleotides do not straightforwardly follow the thermodynamics affinity rank.

12.
Article in English | MEDLINE | ID: mdl-29652405

ABSTRACT

Transcription factors regulate gene expression, but how these proteins recognize and specifically bind to their DNA targets is still debated. Machine learning models are effective means to reveal interaction mechanisms. Here we studied the ability of a quantum machine learning approach to predict binding specificity. Using simplified datasets of a small number of DNA sequences derived from actual binding affinity experiments, we trained a commercially available quantum annealer to classify and rank transcription factor binding. The results were compared to state-of-the-art classical approaches for the same simplified datasets, including simulated annealing, simulated quantum annealing, multiple linear regression, LASSO, and extreme gradient boosting. Despite technological limitations, we find a slight advantage in classification performance and nearly equal ranking performance using the quantum annealer for these fairly small training data sets. Thus, we propose that quantum annealing might be an effective method to implement machine learning for certain computational biology problems.

13.
ACS Chem Biol ; 12(6): 1489-1493, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28437608

ABSTRACT

The RNA-guided CRISPR-Cas9 nuclease has revolutionized genome engineering, yet its mechanism for DNA target selection is not fully understood. A crucial step in Cas9 target recognition involves unwinding of the DNA duplex to form a three-stranded R-loop structure. Work reported here demonstrates direct detection of Cas9-mediated DNA unwinding by a combination of site-directed spin labeling and molecular dynamics simulations. The results support a model in which the unwound nontarget strand is stabilized by a positively charged patch located between the two nuclease domains of Cas9 and reveal uneven increases in flexibility along the unwound nontarget strand upon scissions of the DNA backbone. This work establishes the synergistic combination of spin-labeling and molecular dynamics to directly monitor Cas9-mediated DNA conformational changes and yields information on the target DNA in different stages of Cas9 function, thus advancing mechanistic understanding of CRISPR-Cas9 and aiding future technological development.


Subject(s)
CRISPR-Cas Systems/physiology , Genetic Engineering/methods , Nucleic Acid Conformation , Spin Labels , Bacterial Proteins , Endonucleases/metabolism , Molecular Dynamics Simulation , RNA, Guide, Kinetoplastida
14.
Nanoscale ; 9(6): 2279-2290, 2017 Feb 09.
Article in English | MEDLINE | ID: mdl-28124697

ABSTRACT

Proteins in the proximity of inorganic surfaces and nanoparticles may undergo profound adjustments that trigger biomedically relevant processes, such as protein fibrillation. The mechanisms that govern protein-surface interactions at the molecular level are still poorly understood. In this work, we investigate the adsorption onto a gold surface, in water, of an amyloid-ß (Aß) peptide, which is the amyloidogenic peptide involved in Alzheimer's disease. The entire adsorption process, from the peptide in bulk water to its conformational relaxation on the surface, is explored by large-scale atomistic molecular dynamics (MD) simulations. We start by providing a description of the conformational ensemble of Aß in solution by a 22 µs temperature replica exchange MD simulation, which is consistent with previous results. Then, we obtain a statistical description of how the peptide approaches the gold surface by multiple MD simulations, identifying the preferential gold-binding sites and giving a kinetic picture of the association process. Finally, relaxation of the Aß conformations at the gold/water interface is performed by a 19 µs Hamiltonian-temperature replica exchange MD simulation. We find that the conformational ensemble of Aß is strongly perturbed by the presence of the surface. In particular, at the gold/water interface the population of the conformers akin to amyloid fibrils is significantly enriched, suggesting that this extended contact geometry may promote fibrillation.

15.
Biochemistry ; 55(2): 360-72, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26678746

ABSTRACT

Guanine-rich oligonucleotides can form a unique G-quadruplex (GQ) structure with stacking units of four guanine bases organized in a plane through Hoogsteen bonding. GQ structures have been detected in vivo and shown to exert their roles in maintaining genome integrity and regulating gene expression. Understanding GQ conformation is important for understanding its inherent biological role and for devising strategies to control and manipulate functions based on targeting GQ. Although a number of biophysical methods have been used to investigate structure and dynamics of GQs, our understanding is far from complete. As such, this work explores the use of the site-directed spin labeling technique, complemented by molecular dynamics simulations, for investigating GQ conformations. A nucleotide-independent nitroxide label (R5), which has been previously applied for probing conformations of noncoding RNA and DNA duplexes, is attached to multiple sites in a 22-nucleotide DNA strand derived from the human telomeric sequence (hTel-22) that is known to form GQ. The R5 labels are shown to minimally impact GQ folding, and inter-R5 distances measured using double electron-electron resonance spectroscopy are shown to adequately distinguish the different topological conformations of hTel-22 and report variations in their occupancies in response to changes of the environment variables such as salt, crowding agent, and small molecule ligand. The work demonstrates that the R5 label is able to probe GQ conformation and establishes the base for using R5 to study more complex sequences, such as those that may potentially form multimeric GQs in long telomeric repeats.


Subject(s)
G-Quadruplexes , Oligonucleotides/chemistry , Humans , Nitrous Oxide/chemistry , Nucleic Acid Conformation , Protein Conformation
16.
Nanomaterials (Basel) ; 6(10)2016 Oct 15.
Article in English | MEDLINE | ID: mdl-28335314

ABSTRACT

G-quadruplex is a quadruple helical form of nucleic acids that can appear in guanine-rich parts of the genome. The basic unit is the G-tetrad, a planar assembly of four guanines connected by eight hydrogen bonds. Its rich topology and its possible relevance as a drug target for a number of diseases have stimulated several structural studies. The superior stiffness and electronic π-π overlap between consecutive G-tetrads suggest exploitation for nanotechnologies. Here we inspect the intimate link between the structure and the electronic properties, with focus on charge transfer parameters. We show that the electronic couplings between stacked G-tetrads strongly depend on the three-dimensional atomic structure. Furthermore, we reveal a remarkable correlation with the topology: a topology characterized by the absence of syn-anti G-G sequences can better support electronic charge transfer. On the other hand, there is no obvious correlation of the electronic coupling with usual descriptors of the helix shape. We establish a procedure to maximize the correlation with a global helix shape descriptor.

17.
Nat Nanotechnol ; 9(12): 1040-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25344689

ABSTRACT

DNA and DNA-based polymers are of interest in molecular electronics because of their versatile and programmable structures. However, transport measurements have produced a range of seemingly contradictory results due to differences in the measured molecules and experimental set-ups, and transporting significant current through individual DNA-based molecules remains a considerable challenge. Here, we report reproducible charge transport in guanine-quadruplex (G4) DNA molecules adsorbed on a mica substrate. Currents ranging from tens of picoamperes to more than 100 pA were measured in the G4-DNA over distances ranging from tens of nanometres to more than 100 nm. Our experimental results, combined with theoretical modelling, suggest that transport occurs via a thermally activated long-range hopping between multi-tetrad segments of DNA. These results could re-ignite interest in DNA-based wires and devices, and in the use of such systems in the development of programmable circuits.


Subject(s)
Aluminum Silicates , DNA/chemistry , Electric Conductivity , Nanowires/chemistry
18.
J Phys Chem B ; 118(4): 864-72, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24397412

ABSTRACT

We use a stepwise pulling protocol in molecular dynamics simulations to identify how a G-quadruplex selects and conducts Na(+), K(+), and NH4(+) ions. By estimating the minimum free-energy changes of the ions along the central channel via Jarzynski's equality, we find that the G-quadruplex selectively binds the ionic species in the following order: K(+) > Na(+) > NH4(+). This order implies that K(+) optimally fits the channel. However, the features of the free-energy profiles indicate that the channel conducts Na(+) best. These findings are in fair agreement with experiments on G-quadruplexes and reveal a profoundly different behavior from the prototype potassium-ion channel KcsA, which selects and conducts the same ionic species. We further show that the channel can also conduct a single file of water molecules and deform to leak water molecules. We propose a range for the conductance of the G-quadruplex.


Subject(s)
Ammonium Compounds/analysis , G-Quadruplexes , Molecular Dynamics Simulation , Nanostructures/chemistry , Potassium/analysis , Sodium/analysis , Binding Sites , Ions/analysis , Water/chemistry
19.
J Chem Theory Comput ; 10(4): 1707-16, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-26580379

ABSTRACT

The interaction of DNA molecules with hard substrates is of paramount importance both for the study of DNA itself and for the variety of possible technological applications. Interaction with inorganic surfaces strongly modifies the helical shape of DNA. Hence, an accurate understanding of DNA structure and function at interfaces is a fundamental question with enormous impact in science and society. This work sets the fundamentals for the simulation of entire DNA oligomers on gold surfaces in dry and wet conditions. Thanks to the new GolDNA-AMBER force field, which was derived from first principles and includes dispersion interactions and polarization effects, we simulated self-assembled guanine and adenine monolayers on Au(111) in vacuo and the adsorption of all nucleobases on the same substrate in aqueous conditions. The periodic monolayers obtained from classical simulations match very well those from first principle calculations and experiments, assessing the robustness of the force field and motivating the application to more complex systems for which quantum calculations are not affordable and experiments are elusive. The energetics of nucleobases on Au(111) in solution reveal fundamental physicochemical effects: we find that the adsorption paradigm shifts from purely enthalpic to dominantly entropic by changing the environment and aggregation phase.

20.
PLoS One ; 8(9): e74383, 2013.
Article in English | MEDLINE | ID: mdl-24098643

ABSTRACT

Neuronal calcium sensor-1 (NCS-1) is a protein able to trigger signal transduction processes by binding a large number of substrates and re-shaping its structure depending on the environmental conditions. The X-ray crystal structure of the unmyristoilated NCS-1 shows a large solvent-exposed hydrophobic crevice (HC); this HC is partially occupied by the C-terminal tail and thus elusive to the surrounding solvent. We studied the native state of NCS-1 by performing room temperature molecular dynamics (MD) simulations starting from the crystal and the solution structures. We observe relaxation to a state independent of the initial structure, in which the C-terminal tail occupies the HC. We suggest that the C-terminal tail shields the HC binding pocket and modulates the affinity of NCS-1 for its natural targets. By analyzing the topology and nature of the inter-residue potential energy, we provide a compelling description of the interaction network that determines the three-dimensional organization of NCS-1.


Subject(s)
Models, Molecular , Neuronal Calcium-Sensor Proteins/chemistry , Neuropeptides/chemistry , Protein Conformation , Cluster Analysis , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...