Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(14): 6311-6322, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38487871

ABSTRACT

While platinum(II)-based drugs continue to be employed in cancer treatments, the escalating occurrence of severe side effects has spurred researchers to explore novel sources for potential therapeutic agents. Notably, cobalt(III) has emerged as a subject of considerable interest due to its ubiquitous role in human physiology. Several studies investigating the anticancer effects of Salphen complexes derived from cobalt(III) have unveiled intriguing antiproliferative properties. In a bid to enhance our understanding of this class of compounds, we synthesized and characterized two novel half Salphen cobalt(III) complexes. Both compounds exhibited notable stability, even in the presence of physiologically relevant concentrations of glutathione. The application of spectroscopic and computational methodologies unravelled their interactions with duplex and G4-DNAs, suggesting an external binding affinity for these structures, with preliminary indications of selectivity trends. Importantly, antiproliferative assays conducted on 3D cultured SW-1353 cancer cells unveiled a compelling anticancer activity at low micromolar concentrations, underscoring the potential therapeutic efficacy of this novel class of cobalt(III) complexes.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Humans , Coordination Complexes/chemistry , Cobalt/pharmacology , Cobalt/chemistry , Phenylenediamines/chemistry , DNA/chemistry , Antineoplastic Agents/chemistry
2.
Methods Mol Biol ; 2373: 267-281, 2022.
Article in English | MEDLINE | ID: mdl-34520018

ABSTRACT

Interface tissues are functionally graded tissues characterized by a complex layered structure, which therefore present a great challenge to be reproduced and cultured in vitro. Here, we describe the design and operation of a 3D printed dual-chamber bioreactor as a culturing system for biphasic native or engineered osteochondral tissues. The bioreactor is designed to potentially accommodate a variety of interface tissues and enables the precise study of tissue crosstalk by creating two separate microenvironments while maintaining the tissue compartments in direct contact.


Subject(s)
Tissue Engineering , Bioreactors , Cartilage , Tissue Scaffolds
3.
Cells Tissues Organs ; 211(6): 670-688, 2022.
Article in English | MEDLINE | ID: mdl-34261061

ABSTRACT

Articular cartilage is crucially influenced by loading during development, health, and disease. However, our knowledge of the mechanical conditions that promote engineered cartilage maturation or tissue repair is still incomplete. Current in vitro models that allow precise control of the local mechanical environment have been dramatically limited by very low throughput, usually just a few specimens per experiment. To overcome this constraint, we have developed a new device for the high throughput compressive loading of tissue constructs: the High Throughput Mechanical Activator for Cartilage Engineering (HiT-MACE), which allows the mechanoactivation of 6 times more samples than current technologies. With HiT-MACE we were able to apply cyclic loads in the physiological (e.g., equivalent to walking and normal daily activity) and supra-physiological range (e.g., injurious impacts or extensive overloading) to up to 24 samples in one single run. In this report, we compared the early response of cartilage to physiological and supra-physiological mechanical loading to the response to IL-1ß exposure, a common but rudimentary in vitro model of cartilage osteoarthritis. Physiological loading rapidly upregulated gene expression of anabolic markers along the TGF-ß1 pathway. Notably, TGF-ß1 or serum was not included in the medium. Supra-physiological loading caused a mild catabolic response while IL-1ß exposure drove a rapid anabolic shift. This aligns well with recent findings suggesting that overloading is a more realistic and biomimetic model of cartilage degeneration. Taken together, these findings showed that the application of HiT-MACE allowed the use of larger number of samples to generate higher volume of data to effectively explore cartilage mechanobiology, which will enable the design of more effective repair and rehabilitation strategies for degenerative cartilage pathologies.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Transforming Growth Factor beta1/metabolism , Cartilage, Articular/metabolism , Osteoarthritis/metabolism , Chondrocytes/metabolism , Tissue Engineering
4.
Int J Mol Sci ; 22(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34360991

ABSTRACT

The possibility to reproduce key tissue functions in vitro from induced pluripotent stem cells (iPSCs) is offering an incredible opportunity to gain better insight into biological mechanisms underlying development and disease, and a tool for the rapid screening of drug candidates. This review attempts to summarize recent strategies for specification of iPSCs towards hepatobiliary lineages -hepatocytes and cholangiocytes-and their use as platforms for disease modeling and drug testing. The application of different tissue-engineering methods to promote accurate and reliable readouts is discussed. Space is given to open questions, including to what extent these novel systems can be informative. Potential pathways for improvement are finally suggested.


Subject(s)
Cellular Reprogramming Techniques/methods , Digestive System Diseases/therapy , Drug Discovery/methods , Hepatocytes/cytology , Induced Pluripotent Stem Cells/cytology , Precision Medicine/methods , Animals , Cell Lineage , Digestive System Diseases/metabolism , Digestive System Diseases/pathology , Hepatocytes/metabolism , Humans , Tissue Engineering/methods
5.
Pharmaceutics ; 13(6)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201089

ABSTRACT

Vascular and traumatic injuries of the central nervous system are recognized as global health priorities. A polypharmacology approach that is able to simultaneously target several injury factors by the combination of agents having synergistic effects appears to be promising. Herein, we designed a polymeric delivery system loaded with two drugs, ibuprofen (Ibu) and thyroid hormone triiodothyronine (T3) to in vitro release the suitable amount of the anti-inflammation and the remyelination drug. As a production method, electrospinning technology was used. First, Ibu-loaded micro (diameter circa 0.95-1.20 µm) and nano (diameter circa 0.70 µm) fibers were produced using poly(l-lactide) PLLA and PLGA with different lactide/glycolide ratios (50:50, 75:25, and 85:15) to select the most suitable polymer and fiber diameter. Based on the in vitro release results and in-house knowledge, PLLA nanofibers (mean diameter = 580 ± 120 nm) loaded with both Ibu and T3 were then successfully produced by a co-axial electrospinning technique. The in vitro release studies demonstrated that the final Ibu/T3 PLLA system extended the release of both drugs for 14 days, providing the target sustained release. Finally, studies in cell cultures (RAW macrophages and neural stem cell-derived oligodendrocyte precursor cells-OPCs) demonstrated the anti-inflammatory and promyelinating efficacy of the dual drug-loaded delivery platform.

6.
Microorganisms ; 9(6)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204279

ABSTRACT

Currently, Klebsiella pneumoniae is a pathogen of clinical relevance due to its plastic ability of acquiring resistance genes to multiple antibiotics. During K. pneumoniae infections, lipopolysaccharides (LPS) play an ambiguous role as they both activate immune responses but can also play a role in immune evasion. The LPS O2a and LPS O2afg serotypes are prevalent in most multidrug resistant K. pneumoniae strains. Thus, we sought to understand if those two particular LPS serotypes were involved in a mechanism of immune evasion. We have extracted LPS (serotypes O1, O2a and O2afg) from K. pneumoniae strains and, using human monocytes ex vivo, we assessed the ability of those LPS antigens to induce the production of pro-inflammatory cytokines and chemokines. We observed that, when human monocytes are incubated with LPS serotypes O1, O2a or O2afg strains, O2afg and, to a lesser extent, O2a but not O1 failed to elicit the production of pro-inflammatory cytokines and chemokines, which suggests a role in immune evasion. Our preliminary data also shows that nuclear translocation of NF-κB, a process which regulates an immune response against infections, occurs in monocytes incubated with LPS O1 and, to a smaller extent, with LPS O2a, but not with the LPS serotype O2afg. Our results indicate that multidrug resistant K. pneumoniae expressing LPS O2afg serotypes avoid an initial inflammatory immune response and, consequently, are able to systematically spread inside the host unharmed, which results in the several pathologies associated with this bacterium.

7.
Biofabrication ; 12(2): 025013, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31929117

ABSTRACT

Bone is a highly vascularized tissue, in which vascularization and mineralization are concurrent processes during skeletal development. Indeed, both components should be included in any reliable and adherent in vitro model platform for the study of bone physiology and pathogenesis of skeletal disorders. To this end, we developed an in vitro vascularized bone model, using a gelatin-nanohydroxyapatite (gel-nHA) three-dimensional (3D) bioprinted scaffold. First, we seeded human mesenchymal stem cells (hMSCs) on the scaffold, which underwent osteogenic differentiation for 2 weeks. Then, we included lentiviral-GFP transfected human umbilical vein endothelial cells (HUVECs) within the 3D bioprinted scaffold macropores to form a capillary-like network during 2 more weeks of culture. We tested three experimental conditions: condition 1, bone constructs with HUVECs cultured in 1:1 osteogenic medium (OM): endothelial medium (EM); condition 2, bone constructs without HUVECs cultured in 1:1 OM:EM; condition 3: bone construct with HUVECs cultured in 1:1 growth medium:EM. All samples resulted in engineered bone matrix. In conditions 1 and 3, HUVECs formed tubular structures within the bone constructs, with the assembly of a complex capillary-like network visible by fluorescence microscopy in the live tissue and histology. CD31 immunostaining confirmed significant vascular lumen formation. Quantitative real-time PCR was used to quantify osteogenic differentiation and endothelial response. Alkaline phosphatase and runt-related transcription factor 2 upregulation confirmed early osteogenic commitment of hMSCs. Even when OM was removed under condition 3, we observed clear osteogenesis, which was notably accompanied by upregulation of osteopontin, vascular endothelial growth factor, and collagen type I. These findings indicate that we have successfully realized a bone model with robust vascularization in just 4 weeks of culture and we highlighted how the inclusion of endothelial cells more realistically supports osteogenesis. The approach reported here resulted in a biologically inspired in vitro model of bone vascularization, simulating de novo morphogenesis of capillary vessels occurring during tissue development.


Subject(s)
Bone and Bones/blood supply , Human Umbilical Vein Endothelial Cells/cytology , Mesenchymal Stem Cells/cytology , Osteogenesis , Tissue Engineering/methods , Alkaline Phosphatase/metabolism , Bioprinting , Bone Development , Bone and Bones/metabolism , Cell Differentiation , Cells, Cultured , Coculture Techniques , Collagen Type I/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Vascular Endothelial Growth Factor A/metabolism
8.
Connect Tissue Res ; 61(2): 117-136, 2020 03.
Article in English | MEDLINE | ID: mdl-31524001

ABSTRACT

Airway and other head and neck disorders affect hundreds of thousands of patients each year and most require surgical intervention. Among these, congenital deformity that affects newborns is particularly serious and can be life-threatening. In these cases, reconstructive surgery is resolutive but bears significant limitations, including the donor site morbidity and limited available tissue. In this context, tissue engineering represents a promising alternative approach for the surgical treatment of otolaryngologic disorders. In particular, 3D printing coupled with advanced imaging technologies offers the unique opportunity to reproduce the complex anatomy of native ear, nose, and throat, with its import in terms of functionality as well as aesthetics and the associated patient well-being. In this review, we provide a general overview of the main ear, nose and throat disorders and focus on the most recent scientific literature on 3D printing and bioprinting for their treatment.


Subject(s)
Bioprinting , Otolaryngology , Plastic Surgery Procedures , Printing, Three-Dimensional , Tissue Engineering , Humans
9.
J Nanobiotechnology ; 16(1): 3, 2018 Jan 13.
Article in English | MEDLINE | ID: mdl-29331149

ABSTRACT

Following publication of our article [1], we became aware that Roberto Di Gesù had been omitted from the list of authors. The corrected author list and authors' contribution statement appear below. We apologize for any inconvenience this may have caused.

10.
Methods Enzymol ; 508: 229-51, 2012.
Article in English | MEDLINE | ID: mdl-22449929

ABSTRACT

In this chapter, the main production methods of lipid nanostructures such as solid lipid nanoparticles and nanostructured lipid carriers, and their application are described. In particular, we describe the strategies commonly used to obtain lipid nanoparticles to overcome the blood-brain barrier (BBB) for the treatment of several brain diseases. The use of these carriers as targeted drug delivery systems is associated with many advantages that include excellent storage stability, easy production without the use of any organic solvent, the possibility of steam sterilization and lyophilization, and large scale production. They exhibit good stability during long-term storage, consist of physiologically well-tolerated ingredients often already approved for pharmaceutical applications in humans, and are generally recognized as safe. Under optimized conditions, they can be produced to incorporate several drugs and therapeutic proteins. Formulation in solid lipid nanostructures confers improved drug loading and protein stability, targeting, and sustained release of the incorporated molecules. Moreover, their lipophilic features lead them to the central nervous system by an endocytotic mechanism, overcoming the BBB. Many drugs have been incorporated into solid lipid nanosystems and several therapeutic applications may be foreseen, such as targeting with molecules useful for treatment of brain diseases.


Subject(s)
Brain/metabolism , Drug Delivery Systems , Lipids/chemistry , Nanoparticles , Blood-Brain Barrier , Humans
11.
Int J Nanomedicine ; 6: 2953-62, 2011.
Article in English | MEDLINE | ID: mdl-22162654

ABSTRACT

Parietaria pollen is one of the major causes of allergic reaction in southern Europe, affecting about 30% of all allergic patients in this area. Specific immunotherapy is the only treatment able to modify the natural outcome of the disease by restoring a normal immunity against allergens. The preparation of allergen-solid lipid nanoparticles as delivery vehicles for therapeutic proteins, P. judaica major allergen Par j 2, was investigated. The Par j 2 allergen was expressed in a large amount in Escherichia coli and purified to homogeneity. Its immunological properties were studied by western blotting and enzyme-linked immunosorbent assay inhibition. Solid lipid nanoparticles were obtained by water-in-oil-in-water multiple emulsion method and characterized in terms of mean size and surface charge. These systems (approximately 250 nm diameter and negative surface charge) incorporated recombinant Par j 2 with 40% or greater efficiency. Moreover, the endotoxin level and anaphylactic activity of the empty solid lipid nanoparticles and recombinant Par j 2-loaded solid lipid nanoparticles were evaluated by looking at the overexpression of CD203c marker on human basophils. These results demonstrate that recombinant Par j 2-nanoparticles could be proposed as safe compositions for the development of new therapeutic dosage forms to cure allergic reactions.


Subject(s)
Allergens/chemistry , Allergens/immunology , Drug Carriers/chemistry , Membrane Lipids/chemistry , Nanoparticles/chemistry , Plant Proteins/chemistry , Plant Proteins/immunology , Basophils/metabolism , Emulsions , Enzyme-Linked Immunosorbent Assay , Humans , Immunotherapy , Particle Size , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Rhinitis, Allergic, Seasonal
SELECTION OF CITATIONS
SEARCH DETAIL
...