Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Am J Physiol Endocrinol Metab ; 324(4): E314-E329, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36652400

ABSTRACT

Kisspeptin and γ-amino butyric acid (GABA), synthesized in the central nervous system, are critical for reproduction. Both are also expressed in peripheral organs/tissues critical to metabolic control (liver/pancreas/adipose). Many kisspeptin neurons coexpress GABAB receptors (GABABR) and GABA controls kisspeptin expression and secretion. We developed a unique mouse lacking GABABR exclusively from kisspeptin cells/neurons (Kiss1-GABAB1KO) to evaluate the impact on metabolism/reproduction. We confirmed selective deletion of GABABR from Kiss1 cells in the anteroventral periventricular nucleus/periventricular nucleus continuum (AVPV/PeN; immunofluorescence and PCR) and arcuate nucleus (ARC), medial amygdala (MeA), pituitary, liver, and testes (PCR). Young Kiss1-GABAB1KO males were fertile, with normal LH and testosterone. Kiss1 expression was similar between genotypes in AVPV/PeN, ARC, MeA, bed nucleus of the stria terminalis (BNST), and peripheral organs (testis, liver, pituitary). Kiss1-GABAB1KO males presented higher fasted glycemia and insulin levels, an impaired response to a glucose overload, reduced insulin sensitivity, and marked insulin resistance. Interestingly, when Kiss1-GABAB1KO males got older (9 mo old) their body weight (BW) increased, in part due to an increase in white adipose tissue (WAT). Old Kiss1-GABAB1KO males showed higher fasted insulin, increased pancreatic insulin content, insulin resistance, and significantly decreased pancreatic kisspeptin levels. In sum, lack of GABABR specifically in Kiss1 cells severely impacts glucose homeostasis in male mice, reinforcing kisspeptin involvement in metabolic regulation. These alterations in glucose homeostasis worsened with aging. We highlight the impact of GABA through GABABR in the regulation of the pancreas kisspeptin system in contrast to liver kisspeptin that was not affected.NEW & NOTEWORTHY We developed a unique mouse lacking GABAB receptors specifically in Kiss1 cells to evaluate the impact on reproduction and metabolism. Knockout males showed a severe impact on glucose homeostasis, which worsened with aging. These results reinforce the proposed kisspeptin involvement in metabolic regulation and highlight the impact of GABA through GABABR in the regulation of the peripheral pancreas kisspeptin system.


Subject(s)
Insulin Resistance , Insulins , Mice , Animals , Male , Kisspeptins/genetics , Kisspeptins/metabolism , Insulin Resistance/genetics , Estradiol/metabolism , Mice, Knockout , Reproduction/genetics , Homeostasis , gamma-Aminobutyric Acid/metabolism
2.
Neuroendocrinology ; 112(10): 998-1026, 2022.
Article in English | MEDLINE | ID: mdl-34963114

ABSTRACT

INTRODUCTION: The kisspeptin gene Kiss1 is expressed in two hypothalamic areas: anteroventral periventricular nucleus/periventricular nucleus (AVPV/PeN) and arcuate nucleus (ARC), and also in gonads. Several pieces of evidence suggests that gamma-amino butyric acid B receptors (GABAB) signaling can regulate Kiss1 expression. Here, we inhibited GABAB signaling from PND2 to PND21 and evaluated the hypothalamic-pituitary-gonadal (HPG) axis. METHODS: BALB/c mice were treated on postnatal days 2-21 (PND2-PND21) with CGP55845 (GABAB antagonist) and evaluated in PND21 and adulthood: gene expression (qPCR) in the hypothalamus and gonads, hormones by radioimmunoassay, gonad histochemistry (H&E), puberty onset, and estrous cycles. RESULTS: At PND21, CGP inhibited Kiss1 and Tac2 and increased Pdyn and Gabbr1 in the ARC of both sexes and decreased Th only in female AVPV/PeN. Serum follicle-stimulating hormone (FSH) and testis weight were decreased in CGP-males, and puberty onset was delayed. In adults, Kiss1, Tac2, Pdyn, Pgr, Cyp19a1, and Gad1 were downregulated, while Gabbr1 was upregulated in the ARC of both sexes. In the AVPV/PeN, Kiss1, Th, Cyp19a1, and Pgr were decreased while Gad1 was increased in CGP-females, whereas Cyp19a1 was increased in CGP-males. Serum FSH was increased in CGP-males while prolactin was increased in CGP-females. Testosterone and progesterone were increased in ovaries from CGP-females, in which Kiss1, Cyp19a1, and Esr1 were downregulated while Hsd3b2 was upregulated, together with increased atretic and decreased ovulatory follicles. Testes from CGP-males showed decreased progesterone, increased Gabbr1, Kiss1, Kiss1r, and Esr2 and decreased Cyp19a1, and clear signs of seminiferous tubules atrophy. CONCLUSION: These results demonstrate that appropriate GABAB signaling during this critical prepubertal period is necessary for the normal development of the HPG axis.


Subject(s)
Kisspeptins , Progesterone , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Female , Follicle Stimulating Hormone , GABA Antagonists , Gonads , Hypothalamus/metabolism , Kisspeptins/genetics , Kisspeptins/metabolism , Male , Mice , Progesterone/metabolism , Prolactin/metabolism , Receptors, Kisspeptin-1/metabolism , Sexual Maturation/physiology , Testosterone/metabolism , Weaning
3.
Am J Physiol Endocrinol Metab ; 318(6): E901-E919, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32286880

ABSTRACT

Lack of GABAB receptors in GABAB1 knockout mice decreases neonatal ARC kisspeptin 1 (Kiss1) expression in the arcuate nucleus of the hypothalamus (ARC) in females, which show impaired reproduction as adults. Our aim was to selectively impair GABAB signaling during a short postnatal period to evaluate its impact on the reproductive system. Neonatal male and female mice were injected with the GABAB antagonist CGP 55845 (CGP, 1 mg/kg body wt sc) or saline from postnatal day 2 (PND2) to PND6, three times per day (8 AM, 1 PM, and 6 PM). One group was killed on PND6 for collection of blood samples (hormones by radioimmunoassay), brains for gene expression in the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN), and ARC micropunches [quantitative PCR (qPCR)] and gonads for qPCR, hormone contents, and histology. A second group of mice was injected with CGP (1 mg/kg body wt sc) or saline from PND2 to PND6, three times per day (8 AM, 1 PM, and 6 PM), and left to grow to adulthood. We measured body weight during development and parameters of sexual differentiation, puberty onset, and estrous cycles. Adult mice were killed, and trunk blood (hormones), brains for qPCR, and gonads for qPCR and hormone contents were obtained. Our most important findings on PND6 include the CGP-induced decrease in ARC Kiss1 and increase in neurokinin B (Tac2) in both sexes; the decrease in AVPV/PeN tyrosine hydroxylase (Th) only in females; the increase in gonad estradiol content in both sexes; and the increase in primordial follicles and decrease in primary and secondary follicles. Neonatally CGP-treated adults showed decreased ARC Kiss1 and ARC gonadotropin-releasing hormone (Gnrh1) and increased ARC glutamic acid decarboxylase 67 (Gad1) only in males; increased ARC GABAB receptor subunit 1 (Gabbr1) in both sexes; and decreased AVPV/PeN Th only in females. We demonstrate that ARC Kiss1 expression is chronically downregulated in males and that the normal sex difference in AVPV/PeN Th expression is abolished. In conclusion, neonatal GABAergic input through GABAB receptors shapes gene expression of factors critical to reproduction.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Gene Expression Regulation, Developmental/physiology , Hypothalamus, Anterior/metabolism , Receptors, GABA-B/metabolism , Animals , Animals, Newborn , Arcuate Nucleus of Hypothalamus/drug effects , Estradiol/metabolism , Female , Follicle Stimulating Hormone/metabolism , GABA-B Receptor Antagonists/pharmacology , Gene Expression Regulation, Developmental/drug effects , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus, Anterior/drug effects , Kisspeptins/genetics , Kisspeptins/metabolism , Luteinizing Hormone/metabolism , Male , Mice , Ovary/drug effects , Ovary/metabolism , Phosphinic Acids/pharmacology , Propanolamines/pharmacology , Protein Precursors/genetics , Protein Precursors/metabolism , Puberty/drug effects , Puberty/genetics , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Receptors, GABA-B/genetics , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Reproduction/drug effects , Reproduction/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sex Differentiation/drug effects , Sex Differentiation/genetics , Tachykinins/genetics , Tachykinins/metabolism , Testis/drug effects , Testis/metabolism , Testosterone/metabolism , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
4.
J Steroid Biochem Mol Biol ; 200: 105627, 2020 06.
Article in English | MEDLINE | ID: mdl-32070756

ABSTRACT

The South American plains vizcacha, Lagostomus maximus, is the only mammal described so far that shows expression of estrogen receptors (ERs) and progesterone receptors (PRs) in gonadotropin-releasing hormone (GnRH) neurons. This animal therefore constitutes an exceptional model for the study of the effect of steroid hormones on the modulation of the hypothalamic-pituitary-ovarian (HPO) axis. By using both in vivo and ex vivo approaches, we have found that pharmacological doses of progesterone (P4) and estradiol (E2) produced an inhibition in the expression of hypothalamic GnRH, while physiological doses produced a differential effect on the pulsatile release frequency or genomic expression of GnRH. Our ex vivo experiment indicates that a short-term effect of E2 modulates the frequency of GnRH release pattern that would be associated with membrane ERs. On the other hand, our in vivo approach suggests that a long-term effect of E2, acting through the classical nuclear ERs-PRs pathway, would produce the modification of GnRH mRNA expression during the GnRH pre-ovulatory surge. Particularly, P4 induced a rise in GnRH mRNA expression and protein release with a decrease in its release frequency. These results suggest different levels of action of steroid hormones on GnRH modulation. We conclude that the fine action of E2 and P4 constitute the key factor to enable the hypothalamic activity during the pregnancy of this mammal.


Subject(s)
Estradiol/pharmacology , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/drug effects , Progesterone/pharmacology , Animals , Estradiol/blood , Female , Gonadotropin-Releasing Hormone/genetics , Hypothalamo-Hypophyseal System , Hypothalamus/metabolism , Luteinizing Hormone/metabolism , Ovariectomy , Ovary , Progesterone/blood , Rodentia
5.
J Neuroendocrinol ; 31(8): e12765, 2019 08.
Article in English | MEDLINE | ID: mdl-31269532

ABSTRACT

Female mice lacking GABAB receptors, GABAB1KO, show disrupted oestrous cycles, reduced pregnancies and increased hypothalamic Gnrh1 mRNA expression, whereas anteroventral periventricular/periventricular preoptic nucleus (AVPV/PeN) Kiss1 mRNA was not affected. In the present study, we characterise the important components of the gonadotrophic preovulatory surge, aiming to unravel the origin of this reproductive impairment. In GABAB1KO and wild-type (WT) females, we determined: (i) hypothalamic oestrogen receptor (ER)α and ß and aromatase mRNA and protein expression; (ii) ovulation index and oestrus serum follicle-stimulating hormone (FSH) and pituitary Gnrh1r expression; (iii) in ovariectomised-oestradiol valerate-treated mice, we evaluated ex vivo hypothalamic gonadotrophin-releasing hormone (GnRH) pulsatility in the presence/absence of kisspeptin (Kiss-10, constant or pulsatile) and oestradiol (constant); and (iv) in ovariectomised-oestradiol silastic capsule-treated mice (proestrous-like environment), we evaluated morning and evening kisspeptin neurone activation (c-Fos+) and serum luteinising homrone (LH). In the medial basal hypothalamus of oestrus GABAB1KOs, aromatase and ERα mRNA and protein were increased, whereas ERß was decreased. In GABAB1KOs, the ovulation index was decreased together with decreased first oestrus serum FSH and increased pituitary Gnrh1r mRNA. Under constant Kiss-10 stimulation, hypothalamic GnRH pulse frequency did not vary, although GnRH mass/pulse was increased in GABAB1KOs. In WTs, pulsatile Kiss-10 together with constant oestradiol significantly increased GnRH pulsatility, whereas, in GABAB1KOs, oestradiol alone increased GnRH pulsatility and this was reversed by pulsatile Kiss-10 addition. In GABAB1KOs AVPV/PeN kisspeptin neurones were similarly activated (c-Fos+) in the morning and evening, whereas WTs showed the expected, marked evening stimulation. LH correlated with activated kisspeptin cells in WT mice, whereas GABAB1KO mice showed high, similar LH levels both in the morning and evening. Taken together, all of these alterations point to impairment in the trigger of the preovulatory GnRH surge that entails the reproductive alterations described.


Subject(s)
Estrous Cycle/blood , Estrous Cycle/genetics , Luteinizing Hormone/blood , Ovulation Inhibition , Receptors, GABA-B/genetics , Animals , Estradiol/blood , Female , Follicle Stimulating Hormone/blood , Gonadotropin-Releasing Hormone/blood , Mice , Mice, Inbred BALB C , Mice, Knockout , Ovulation/blood , Ovulation/genetics , Ovulation Inhibition/blood , Ovulation Inhibition/genetics , Up-Regulation/genetics
6.
Reproduction ; 157(6): R225-R233, 2019 06.
Article in English | MEDLINE | ID: mdl-30844750

ABSTRACT

Neuroendocrine control of reproduction involves the interplay of various factors that become active at some point along development. GnRH is the main neurohormone controlling reproduction and among the most important inputs modulating GnRH synthesis/secretion are GABA and kisspeptins. These interactions of GABA and kisspeptin in the control of GnRH secretion can take place by the presence of the receptors of both factors on the GnRH neuron or alternatively by the actions of GABA on kisspeptin neurons and/or the actions of kisspeptin on GABA neurons. Kisspeptin acts on the Kiss1R, a seven transmembrane domain, Gαq/11-coupled receptor that activates phospholipase C, although some Gαq/11-independent pathways in mediating part of the effects of Kiss1R activation have also been proposed. GABA acts through two kinds of receptors, ionotropic GABAA/C receptors involving a chloride channel and associated with fast inhibitory/stimulatory conductance and metabotropic GABAB receptors (GABABR) that are Gi/0 protein linked inducing late slow hyperpolarization. In this review, we aim to summarize the different ways in which these two actors, kisspeptin and GABA, interact to modulate GnRH secretion across the reproductive lifespan.


Subject(s)
Gonadotropin-Releasing Hormone/metabolism , Kisspeptins/metabolism , Receptors, Kisspeptin-1/metabolism , Reproduction/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Humans
7.
Endocrinology ; 159(9): 3389-3402, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30107405

ABSTRACT

Kisspeptin, encoded by Kiss1, activates reproduction by stimulating GnRH neurons. Although most Kiss1 neurons are located in the hypothalamus, smaller Kiss1 populations also reside in the medial amygdala (MeA), bed nucleus of the stria terminalis (BnST), and lateral septum (LS). However, very little is known about the regulation and function of these extra-hypothalamic Kiss1 neurons. This study focused on the roles and interactions of two signaling factors, estradiol (E2) and GABA, known to stimulate and inhibit, respectively, extra-hypothalamic Kiss1 expression. First, using estrogen receptor (ER)α knockout (KO) and ßERKO mice, we demonstrated that Kiss1 in both the BnST and LS is stimulated by E2, as occurs in the MeA, and that this E2 upregulation occurs via ERα, but not ERß. Second, using GABABR KO and wild-type mice, we determined that whereas E2 normally increases extra-hypothalamic Kiss1 levels, such upregulation by E2 is further enhanced by the concurrent absence of GABABR signaling in the MeA and LS, but not the BnST. Third, we demonstrated that when GABABR signaling is absent, the additional removal of gonadal sex steroids does not abolish Kiss1 expression in the MeA and BnST, and in some cases the LS. Thus, Kiss1 expression in these extra-hypothalamic regions is not solely dependent on E2 stimulation. Finally, we demonstrated a significant positive correlation between Kiss1 levels in the MeA, BnST, and LS, but not between these regions and the hypothalamus (anteroventral periventricular nucleus/periventricular nucleus). Collectively, our findings indicate that both E2 and GABA independently regulate all three extra-hypothalamic Kiss1 populations, but their regulatory interactions may vary by brain region and additional yet-to-be-identified factors are likely involved.


Subject(s)
Amygdala/drug effects , Estradiol/pharmacology , Estrogens/pharmacology , Kisspeptins/genetics , Neurons/drug effects , Receptors, GABA-B/metabolism , Septal Nuclei/drug effects , Amygdala/cytology , Amygdala/metabolism , Animals , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Female , Kisspeptins/metabolism , Male , Mice , Mice, Knockout , Neurons/metabolism , Septal Nuclei/cytology , Septal Nuclei/metabolism , Signal Transduction , gamma-Aminobutyric Acid/metabolism
8.
Physiol Rep ; 5(19)2017 Oct.
Article in English | MEDLINE | ID: mdl-29038356

ABSTRACT

Females of the South American plains vizcacha, Lagostomus maximus, show peculiar reproductive features such as massive polyovulation up to 800 oocytes per estrous cycle and an ovulatory process around mid-gestation arising from the reactivation of the hypothalamic-hypophyseal-ovary (H.H.O.) axis. Estradiol (E2) regulates gonadotropin-releasing hormone (GnRH) expression. Biosynthesis of estrogens results from the aromatization of androgens by aromatase, which mainly occurs in the gonads, but has also been described in the hypothalamus. The recently described correlation between GnRH and ERα expression patterns in the hypothalamus of the vizcacha during pregnancy, with coexpression in the same neurons of the medial preoptic area, suggests that hypothalamic synthesis of E2 may affect GnRH neurons and contribute with systemic E2 to modulate GnRH delivery during the gestation. To elucidate this hypothesis, hypothalamic expression and the action of aromatase on GnRH release were evaluated in female vizcachas throughout pregnancy. Aromatase and GnRH expression was increased significantly in mid-pregnant and term-pregnant vizcachas compared to early-pregnant and nonpregnant females. In addition, aromatase and GnRH were colocalized in neurons of the medial preoptic area of the hypothalamus throughout gestation. The blockage of the negative feedback of E2 induced by the inhibition of aromatase resulted in a significant increment of GnRH-secreted mass by hypothalamic explants. E2 produced in the same neurons as GnRH may drive intracellular E2 to higher levels than those obtained from systemic circulation alone. This may trigger for a prompt GnRH availability enabling H.H.O. activity at mid-gestation with ovulation and formation of accessory corpora lutea with steroidogenic activity that produce the necessary progesterone to maintain gestation to term and guarantee the reproductive success.


Subject(s)
Estradiol/metabolism , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Pregnancy/metabolism , Animals , Aromatase/metabolism , Feedback, Physiological , Female , Hypothalamus/cytology , Neurons/metabolism , Rodentia
9.
Endocrinology ; 157(11): 4446-4460, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27571131

ABSTRACT

The Wobbler mouse is an animal model for human motoneuron diseases, especially amyotrophic lateral sclerosis (ALS), used in the investigation of both pathology and therapeutic treatment. ALS is a fatal neurodegenerative disease, characterized by the selective and progressive death of motoneurons, leading to progressive paralysis. Previous limited studies have reported steroidal hormone dysregulation in Wobbler mouse and in ALS patients, suggesting endocrine dysfunctions which may be involved in the pathogenesis of the disease. In this study, we established a steroid profiling in brain, spinal cord, plasma, adrenal glands, and testes in 2-month-old male Wobbler mice and their littermates by gas chromatography coupled to mass spectrometry. Our results show in Wobbler mice the following: 1) a marked up-regulation of corticosterone levels in adrenal glands, plasma, spinal cord regions (cervical, thoracic, lumbar) and brain; 2) a strong decrease in T levels in the testis, plasma, spinal cord, and brain; and 3) increased levels of progesterone and especially of its reduced metabolites 5α-dihydroprogesterone, allopregnanolone, and 20α-dihydroprogesterone in the brain, spinal cord, and adrenal glands. Furthermore, Wobbler mice showed a hypothalamic-pituitary-gonadal hypoactivity. Interestingly, plasma concentrations of corticosterone and T correlate well with their respective levels in cervical spinal cord in both control and Wobbler mice. T down-regulation is probably the consequence of adrenal hyperactivity, and the up-regulation of progesterone and its reduced metabolites may correspond to an endogenous protective mechanism in response to motoneuron degeneration. Our findings suggest that increased levels of corticosterone and decreased levels of T in plasma could be a signature of motoneuron degeneration.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , 17-Ketosteroids/blood , 17-Ketosteroids/metabolism , Adrenal Glands/metabolism , Amyotrophic Lateral Sclerosis/blood , Androstanols/blood , Androstanols/metabolism , Animals , Brain/metabolism , Corticosterone/blood , Corticosterone/metabolism , Disease Models, Animal , Female , Gas Chromatography-Mass Spectrometry , Gonadotropin-Releasing Hormone/metabolism , Luteinizing Hormone/blood , Male , Mice , Motor Neurons/metabolism , Motor Neurons/physiology , Pregnanolone/blood , Pregnanolone/metabolism , Progesterone/blood , Progesterone/metabolism , Spinal Cord/metabolism , Testis/metabolism , Testosterone/blood , Testosterone/metabolism
10.
Mol Cell Endocrinol ; 390(1-2): 102-11, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24755422

ABSTRACT

Transgenic female mice overexpressing the α- and ß- subunits of human chorionic gonadotropin (hCGαß+) exhibited precocious puberty, as evidenced by early vaginal opening. Chronically elevated hCG in 21-day-old hCGαß+ females stimulated gonadal androgen production, which exerted negative feedback over the endogenous gonadotropin synthesis, and activated the hypothalamic GnRH pulsatility and gene expression. Transgenic females also exhibited elevated hypothalamic aromatization in the preoptic area (POA), which is the sexually-differentiated area that controls the LH surge in adulthood. Ovariectomy at 14 days of age was unable to rescue this phenotype. However, the blockade of androgen action by flutamide from postnatal day 6 onwards reduced the aromatase levels in the POA of hCGαß+ females. Our results suggest that early exposure of females to androgen action during a critical period between postnatal days 6-14 induces sex-specific organizational changes of the brain, which affect the aromatase expression in the POA at the onset of precocious puberty.


Subject(s)
Chorionic Gonadotropin/metabolism , Hypothalamus/metabolism , Puberty, Precocious/metabolism , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Animals , Aromatase/metabolism , Cells, Cultured , Chorionic Gonadotropin/physiology , Estradiol/blood , Female , Flutamide/pharmacology , Flutamide/therapeutic use , Follicle Stimulating Hormone/blood , Gene Expression , Gonadotropin-Releasing Hormone/physiology , Humans , Mice, Transgenic , Pituitary Gland/metabolism , Puberty, Precocious/drug therapy , Testosterone/blood , Vagina/physiopathology
11.
Endocrinology ; 155(3): 1033-44, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24424047

ABSTRACT

Kisspeptin, encoded by Kiss1, stimulates reproduction and is synthesized in the hypothalamic anteroventral periventricular and arcuate nuclei. Kiss1 is also expressed at lower levels in the medial amygdala (MeA) and bed nucleus of the stria terminalis (BNST), but the regulation and function of Kiss1 there is poorly understood. γ-Aminobutyric acid (GABA) also regulates reproduction, and female GABAB1 receptor knockout (KO) mice have compromised fertility. However, the interaction between GABAB receptors and Kiss1 neurons is unknown. Here, using double-label in situ hybridization, we first demonstrated that a majority of hypothalamic Kiss1 neurons coexpress GABAB1 subunit, a finding also confirmed for most MeA Kiss1 neurons. Yet, despite known reproductive impairments in GABAB1KO mice, Kiss1 expression in the anteroventral periventricular and arcuate nuclei, assessed by both in situ hybridization and real-time PCR, was identical between adult wild-type and GABAB1KO mice. Surprisingly, however, Kiss1 levels in the BNST and MeA, as well as the lateral septum (a region normally lacking Kiss1 expression), were dramatically increased in both GABAB1KO males and females. The increased Kiss1 levels in extrahypothalamic regions were not caused by elevated sex steroids (which can increase Kiss1 expression), because circulating estradiol and testosterone were equivalent between genotypes. Interestingly, increased Kiss1 expression was not detected in the MeA or BNST in prepubertal KO mice of either sex, indicating that the enhancements in extrahypothalamic Kiss1 levels initiate during/after puberty. These findings suggest that GABAB signaling may normally directly or indirectly inhibit Kiss1 expression, particularly in the BNST and MeA, and highlight the importance of studying kisspeptin populations outside the hypothalamus.


Subject(s)
Gene Expression Regulation , Kisspeptins/metabolism , Receptors, GABA-B/metabolism , Signal Transduction , Amygdala/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Brain Mapping , Estradiol/metabolism , Female , Genotype , Hypothalamus/metabolism , Immunohistochemistry , Kisspeptins/genetics , Male , Mice , Mice, Knockout , Midline Thalamic Nuclei/metabolism , Neurons/metabolism , Phenotype , Receptors, GABA-B/genetics , Septal Nuclei/metabolism , Testosterone/metabolism , Time Factors , Up-Regulation , gamma-Aminobutyric Acid/metabolism
12.
Neuroendocrinology ; 98(3): 212-23, 2013.
Article in English | MEDLINE | ID: mdl-24080944

ABSTRACT

BACKGROUND/AIMS: Adult mice lacking functional GABAB receptors (GABAB1KO) show altered Gnrh1 and Gad1 expressions in the preoptic area-anterior hypothalamus (POA-AH) and females display disruption of cyclicity and fertility. Here we addressed whether sexual differentiation of the brain and the proper wiring of the GnRH and kisspeptin systems were already disturbed in postnatal day 4 (PND4) GABAB1KO mice. METHODS: PND4 wild-type (WT) and GABAB1KO mice of both sexes were sacrificed; tissues were collected to determine mRNA expression (qPCR), amino acids (HPLC), and hormones (RIA and/or IHC). RESULTS: GnRH neuron number (IHC) did not differ among groups in olfactory bulbs or OVLT-POA. Gnrh1 mRNA (qPCR) in POA-AH was similar among groups. Gnrh1 mRNA in medial basal hypothalamus (MBH) was similar in WTs but was increased in GABAB1KO females compared to GABAB1KO males. Hypothalamic GnRH (RIA) was sexually different in WTs (males > females), but this sex difference was lost in GABAB1KOs; the same pattern was observed when analyzing only the MBH, but not in the POA-AH. Arcuate nucleus Kiss1 mRNA (micropunch-qPCR) was higher in WT females than in WT males and GABAB1KO females. Gad1 mRNA in MBH was increased in GABAB1KO females compared to GABAB1KO males. Serum LH and gonadal estradiol content were also increased in GABAB1KOs. CONCLUSION: We demonstrate that GABABRs participate in the sexual differentiation of the ARC/MBH, because sex differences in several reproductive genes, such as Gad1, Kiss1 and Gnrh1, are critically disturbed in GABAB1KO mice at PND4, probably altering the organization and development of neural circuits governing the reproductive axis.


Subject(s)
Glutamate Decarboxylase/deficiency , Gonadotropin-Releasing Hormone/deficiency , Hypothalamus, Middle/metabolism , Kisspeptins/deficiency , Protein Precursors/deficiency , Receptors, GABA-B/deficiency , Sex Differentiation/genetics , Animals , Animals, Newborn , Arcuate Nucleus of Hypothalamus/growth & development , Arcuate Nucleus of Hypothalamus/metabolism , Female , Gene Expression Regulation, Developmental , Glutamate Decarboxylase/genetics , Gonadotropin-Releasing Hormone/genetics , Hypothalamus, Middle/growth & development , Kisspeptins/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Protein Precursors/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, GABA-B/genetics
13.
Endocrinology ; 153(12): 5980-92, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23117930

ABSTRACT

Female infertility is often associated with deregulation of hormonal networks, and hyperprolactinemia is one of the most common endocrine disorders of the hypothalamic-pituitary axis affecting the reproductive functions. We have shown previously that transgenic female mice overexpressing human chorionic gonadotropin ß-subunit (hCGß+ mice), and producing elevated levels of bioactive LH/hCG, exhibit increased production of testosterone and progesterone, are overweight and infertile, and develop hyperprolactinemia associated with pituitary lactotrope adenomas in adult age. In the present study, we analyzed the influence of the hyperprolactinemia of hCGß+ females on their reproductive phenotype by treating them with the dopamine agonists, bromocriptine and cabergoline. Long-term bromocriptine treatment of adult mice was effective in the control of obesity, pituitary growth, and disturbances in the hormone profile, demonstrating that hyperprolactinemia was the main cause of the hCGß+ female phenotype. Interestingly, short-term treatment (1 wk) with cabergoline applied on 5-wk-old mice corrected hyperprolactinemia, hyperandrogenism, and hyperprogesteronemia, prevented pituitary overgrowth, normalized gonadal function, and recovered fertility of adult hCGß+ females after hormone-induced and natural ovulation. The same cabergoline treatment in the short term applied on 3-month-old hCGß+ females failed to recover their reproductive function. Hence, we demonstrated that the short-term cabergoline treatment applied at a critical early stage of the phenotype progression effectively prevented the hyperprolactinemia-associated reproductive dysfunction of hCG-overproducing females.


Subject(s)
Chorionic Gonadotropin/metabolism , Hyperprolactinemia/complications , Infertility/complications , Infertility/metabolism , Animals , Bromocriptine/pharmacology , Cabergoline , Disease Models, Animal , Ergolines/pharmacology , Female , Fertility , Gene Expression Regulation , Humans , Hyperprolactinemia/metabolism , Mice , Mice, Transgenic , Ovulation , Phenotype , Time Factors
14.
Mol Cell Endocrinol ; 332(1-2): 78-87, 2011 Jan 30.
Article in English | MEDLINE | ID: mdl-20933053

ABSTRACT

Transgenic male mice that express human chorionic gonadotropin (hCG) α and ß subunits constitutively hypersecrete hCG and produce elevated levels of androgens. The aim of this study was to characterize the hypothalamic-pituitary function of these transgenic (hCGαß+) males by focusing on FSH regulation. Serum FSH levels and pituitary mRNA expression of Fshb, Lhb, Cga, Gnrhr and Esr1 were reduced, whereas Fst expression was increased in prepubertal hCGαß+ males as compared with wild-type. In the hypothalamus, Cyp19a1 expression, GnRH concentration and ex-vivo GnRH pulsatility were elevated in prepubertal hCGαß+ mice, whereas Kiss1 expression was decreased prepubertally and Gad67 expression was elevated neonatally. The effect of androgens on the developmental programming of the hypothalamic-pituitary axis of hCGαß+ males was evaluated by perinatal and prepubertal antiandrogen (flutamide) administration. Our studies identified a critical window between gestational day 18 and postnatal day 14, during which chronically elevated androgens and/or their locally produced metabolites activate the hypothalamus and concomitantly shut-down the gonadotropin axis.


Subject(s)
Androgens/metabolism , Chorionic Gonadotropin, beta Subunit, Human/metabolism , Glycoprotein Hormones, alpha Subunit/metabolism , Hypothalamo-Hypophyseal System/growth & development , Hypothalamo-Hypophyseal System/metabolism , Androgen Antagonists/metabolism , Animals , Aromatase/genetics , Aromatase/metabolism , Castration , Chorionic Gonadotropin, beta Subunit, Human/genetics , Follicle Stimulating Hormone/blood , Follicle Stimulating Hormone/genetics , Gene Expression , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Glycoprotein Hormones, alpha Subunit/genetics , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Humans , Hypothalamus/physiology , Kisspeptins , Luteinizing Hormone/blood , Luteinizing Hormone/genetics , Male , Mice , Mice, Transgenic , Pituitary Gland/physiology , Proteins/genetics , Proteins/metabolism , Puberty/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...