Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
J Appl Toxicol ; 44(8): 1166-1183, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38605572

ABSTRACT

Asbestos fibres have been considered an environmental hazard for decades. However, little is known about the attempts of circulating immune cells to counteract their toxicity. We addressed the early effects of fibre-released soluble factors (i.e. heavy metals) in naïve immune cells, circulating immediately below the alveolar/endothelial cell layer. By comparison, the direct fibre effects on endotheliocytes were also studied since these cells are known to sustain inflammatory processes. The three mineral fibres analysed showed that mainly chrysotile (CHR) and erionite (ERI) were able to release toxic metals in extracellular media respect to crocidolite (CRO), during the first 24 h. Nevertheless, all three fibres were able to induce oxidative stress and genotoxic damage in indirectly challenged naïve THP-1 monocytes (separated by a membrane). Conversely, only CHR-released metal ions induced apoptosis, NF-κB activation, cytokines and CD163 gene overexpression, indicating a differentiation towards the M0 macrophage phenotype. On the other hand, all three mineral fibres in direct contact with HECV endothelial cells showed cytotoxic, genotoxic and apoptotic effects, cytokines and ICAM-I overexpression, indicating the ability of these cells to promote an inflammatory environment in the lung independently from the type of inhaled fibre. Our study highlights the different cellular responses to mineral fibres resulting from both the nature of the cells and their function, but also from the chemical-physical characteristics of the fibres. In conclusion, CHR represented the main pro-inflammatory trigger, able to recruit and activate circulating naïve monocytes, through its released metals, already in the first 24 h after inhalation.


Subject(s)
Mineral Fibers , Humans , Mineral Fibers/toxicity , Oxidative Stress/drug effects , Apoptosis/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , DNA Damage/drug effects , Asbestos, Serpentine/toxicity , THP-1 Cells , Cytokines/metabolism , Inflammation/chemically induced , Monocytes/drug effects , Monocytes/metabolism , Metals, Heavy/toxicity , NF-kappa B/metabolism , Cell Line , Asbestos, Crocidolite/toxicity , Zeolites
2.
Sci Total Environ ; 898: 166275, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37582451

ABSTRACT

Although all six asbestos minerals (the layer silicate chrysotile and five chain silicate species actinolite asbestos, amosite, anthophyllite asbestos, crocidolite and tremolite asbestos) are classified as carcinogenic, chrysotile is still mined and used in many countries worldwide. Other countries, like Italy, impose zero tolerance for all asbestos species, but conflicting views repress the development of globally uniform treaties controlling international trade of asbestos-containing materials. Hence, countries with more severe legislations against the use of these hazardous materials lack of an international safety net against importation of non-compliant products. This research reports the first discovery of commercial magnesite raw materials contaminated with white asbestos (chrysotile). X-ray powder diffraction and thermogravimetric/thermodifferential measurements showed the presence of serpentine group minerals in both the semi-processed (powder) and quarried material. The univocal identification of chrysotile in the powders was confirmed by its peculiar Raman bands of the OH stretching vibrations between 3500 and 3800 cm-1, with an intense peak at ∼3695 cm-1 and a weak contribution at ∼3647 cm-1. Transmission electron microscope showed that chrysotile forms fibres up to a few microns long and up to 80 nm thick with a nanotube structure characterized by inner channels as large as 30-40 nm. Fibres size analysis obtained by scanning electron microscopy indicates mean length and diameter of 5.95 and 0.109 µm with medians of 2.62 and 0.096 µm, respectively; some among the fibres analysed exhibit the so-called "Stanton size" (i.e., asbestos fibres longer than 8 µm and thinner than 0.25 µm that are strongly carcinogenic). Quantitative analysis showed a chrysotile content around 0.01 wt% not allowed by current regulations in Italy and many other countries. More generally, our findings demonstrate that without shared policies aimed at regulating asbestos circulation on the global market, "asbestos-free" national policies will inevitably fail.

3.
IUCrJ ; 10(Pt 4): 397-410, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37199503

ABSTRACT

Erionite is a non-asbestos fibrous zeolite classified by the International Agency for Research on Cancer (IARC) as a Group 1 carcinogen and is considered today similar to or even more carcinogenic than the six regulated asbestos minerals. Exposure to fibrous erionite has been unequivocally linked to cases of malignant mesothelioma (MM) and this killer fibre is assumed to be directly responsible for more than 50% of all deaths in the population of the villages of Karain and Tuzköy in central Anatolia (Turkey). Erionite usually occurs in bundles of thin fibres and very rarely as single acicular or needle-like fibres. For this reason, a crystal structure of this fibre has not been attempted to date although an accurate characterization of its crystal structure is of paramount importance for our understanding of the toxicity and carcinogenicity. In this work, we report on a combined approach of microscopic (SEM, TEM, electron diffraction), spectroscopic (micro-Raman) and chemical techniques with synchrotron nano-single-crystal diffraction that allowed us to obtain the first reliable ab initio crystal structure of this killer zeolite. The refined structure showed regular T-O distances (in the range 1.61-1.65 Å) and extra-framework content in line with the chemical formula (K2.63Ca1.57Mg0.76Na0.13Ba0.01)[Si28.62Al7.35]O72·28.3H2O. The synchrotron nano-diffraction data combined with three-dimensional electron diffraction (3DED) allowed us to unequivocally rule out the presence of offretite. These results are of paramount importance for understanding the mechanisms by which erionite induces toxic damage and for confirming the physical similarities with asbestos fibres.


Subject(s)
Asbestos , Mesothelioma , Zeolites , Humans , Zeolites/analysis , Mesothelioma/epidemiology , Turkey/epidemiology , Environmental Exposure , Carcinogens
4.
Int J Mol Sci ; 23(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35269982

ABSTRACT

Alveolar macrophages are the first line of defence against detrimental inhaled stimuli. To date, no comparative data have been obtained on the inflammatory response induced by different carcinogenic mineral fibres in the three main macrophage phenotypes: M0 (non-activated), M1 (pro-inflammatory) and M2 (alternatively activated). To gain new insights into the different toxicity mechanisms of carcinogenic mineral fibres, the acute effects of fibrous erionite, crocidolite and chrysotile in the three phenotypes obtained by THP-1 monocyte differentiation were investigated. The three mineral fibres apparently act by different toxicity mechanisms. Crocidolite seems to exert its toxic effects mostly as a result of its biodurability, ROS and cytokine production and DNA damage. Chrysotile, due to its low biodurability, displays toxic effects related to the release of toxic metals and the production of ROS and cytokines. Other mechanisms are involved in explaining the toxicity of biodurable fibrous erionite, which induces lower ROS and toxic metal release but exhibits a cation-exchange capacity able to alter the intracellular homeostasis of important cations. Concerning the differences among the three macrophage phenotypes, similar behaviour in the production of pro-inflammatory mediators was observed. The M2 phenotype, although known as a cell type recruited to mitigate the inflammatory state, in the case of asbestos fibres and erionite, serves to support the process by supplying pro-inflammatory mediators.


Subject(s)
Asbestos , Mineral Fibers , Asbestos/metabolism , Asbestos, Crocidolite/metabolism , Asbestos, Serpentine , Inflammation Mediators/metabolism , Macrophages, Alveolar/metabolism , Mineral Fibers/toxicity , Phenotype , Reactive Oxygen Species/metabolism
5.
ACS Omega ; 7(2): 1694-1702, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35071864

ABSTRACT

The policies to meet the "zero waste" regime and transition to sustainable circular economy can no longer ignore the use of wastes in place of natural resources, and these daunting and vital societal challenges are nowadays being faced by several nations. The main objective of this work was to search waste materials suitable for a quick and environmentally friendly production of a nanoporous geomaterial able to trap toxic metals at the solid/liquid interface. More specifically, the end-of-waste from the thermal inertization of cement-asbestos and glass powder from domestic glass containers have been employed as sources for the hydrothermal synthesis of a tobermorite-rich material (TRM) successfully tested for the selective removal of Pb2+, Zn2+, Cd2+, and Ni2+ from aqueous solutions. The synthesis was carried out in alkaline solution under mild hydrothermal conditions (120 °C) within 24 h. The quantitative phase analyses of the TRM carried out by applying the Rietveld method showed the occurrence of a large amount of well-crystallized 11 Å Al-substituted tobermorites and an amorphous phase and a lower content of aragonite and calcite. Chemical analyses and thermogravimetric measurements coupled with simultaneous evolved gas mass spectrometry highlighted that Al3+ for Si4+ substitutions in the wollastonite-like tetrahedral chains of tobermorites are balanced by the occurrence of Ca2+, Na+, and K+ cations in the interlayer rather than by (OH)- for O2- substitutions in the CaO polyhedra. Time-dependent removal tests clearly indicated that metal cations are selectively adsorbed depending on their concentration in solution. Moreover, the kinetic curves showed that the removal of metals from solution is fast and the equilibrium is almost reached in the first 8 h.

6.
Curr Res Toxicol ; 3: 100063, 2022.
Article in English | MEDLINE | ID: mdl-35072111

ABSTRACT

Assessing the human health risk of mineral fibres is an intricate task. In the recent article by Wylie and Korchevskiy (2021) - Carcinogenicity of fibrous glaucophane: how to fill data gaps? (Curr. Res. Toxicol. Vol. 2, pp. 202-203), the authors discuss the potential toxicity and pathogenicity of fibrous glaucophane from the Franciscan Complex, California (USA). Because most of the points of discussion concerns the mineral fibre toxicity/pathogenicity model developed by our research group and the application to the case of fibrous glaucophane (Gualtieri, 2021, Curr. Res. Toxicol. Vol. 2, pp. 42-52), the aim of this Letter is to clear some basic issues, to fill some information gaps and, with a constructive spirit, to provide a complete picture on this topic.

7.
Chemosphere ; 291(Pt 3): 133067, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34838598

ABSTRACT

This study explored the morphological, mineralogical, and physico-chemical features of carcinogenic erionite and other possibly hazardous zeolites, such as mesolite and thomsonite, while also investigating the interacting capability of the mineral surface at the liquid/solid interface. Extremely fibrous erionite is K+ and Ca2+-rich and shows the highest Si/Al ratio (3.38) and specific surface area (8.14 m2/g). Fibrous mesolite is Na+ and Ca2+-rich and displays both a lower Si/Al ratio (1.56) and a smaller specific surface area (1.56 m2/g). The thomsonite composition shows the lowest values of Si/Al ratio (1.23) and specific surface area (0.38 m2/g). Electron paramagnetic resonance data from selected spin probes reveal that erionite has a homogeneous site distribution and interacts well with all spin probes. The surfaces of mesolite and thomsonite are less homogeneous and closer polar sites were found through consequent interaction with the probes. The mesolite surface can also clearly interact but with a lower strength and may represent a potential health hazard for humans, though with a lower degree if compared to erionite. The thomsonite surface is not inert and interacts with the probes with a low-grade capability. We can expect small fragments of thomsonite to interact with the biological environment, though with a low-grade intensity.


Subject(s)
Zeolites , Carcinogens , Electron Spin Resonance Spectroscopy , Humans
8.
Toxicology ; 466: 153081, 2022 01 30.
Article in English | MEDLINE | ID: mdl-34953976

ABSTRACT

Inhalation of mineral fibres is associated with the onset of an inflammatory activity in the lungs and the pleura responsible for the development of fatal malignancies. It is known that cell damage is a necessary step for triggering the inflammatory response. However, the mechanisms by which mineral fibres exert cytotoxic activity are not fully understood. In this work, the kinetics of the early cytotoxicity mechanisms of three mineral fibres (i.e., chrysotile, crocidolite and fibrous erionite) classified as carcinogenic by the International Agency for Research on Cancer, was determined for the first time in a comparative manner using time-lapse video microscopy coupled with in vitro assays. All tests were performed using the THP-1 cell line, differentiated into M0 macrophages (M0-THP-1) and exposed for short times (8 h) to 25 µg/mL aliquots of chrysotile, crocidolite and fibrous erionite. The toxic action of fibrous erionite on M0-THP-1 cells is manifested since the early steps (2 h) of the experiment while the cytotoxicity of crocidolite and chrysotile gradually increases during the time span of the experiment. Chrysotile and crocidolite prompt cell death mainly via apoptosis, while erionite exposure is also probably associated to a necrotic-like effect. The potential mechanisms underlying these different toxicity behaviours are discussed in the light of the different morphological, and chemical-physical properties of the three fibres.


Subject(s)
Apoptosis , Microscopy, Video/methods , Mineral Fibers/toxicity , Reactive Oxygen Species/metabolism , Time-Lapse Imaging/methods , Asbestos, Crocidolite/toxicity , Asbestos, Serpentine/toxicity , Calcium/metabolism , Fluorescent Dyes , Humans , Sodium/metabolism , THP-1 Cells , Zeolites/toxicity
9.
Sci Rep ; 11(1): 6285, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737553

ABSTRACT

Tremolite is one of the most common amphibole species and, in the fibrous form (i.e., characterized by crystals/particles consisting of fibres with length > 5 µm, width < 3 µm and aspect ratio > 3), one of the six asbestos minerals. Until now the attention of crystallographers has focused only on samples from continental environment. Here we report the first chemical and structural data of a tremolite asbestos found along the Mid Atlantic Ridge (MAR) at the eastern intersection of the Romanche Transform Fault (Equatorial MAR). Tremolite is associated with chlorite and lizardite and was formed through the green shale facies lower than zeolite in a predominantly fluid system. MAR tremolite asbestos shows very slight deviations from the ideal crystal structure of tremolite. Differences in cation site partitioning were found with respect to tremolite asbestos from ophiolitic complexes, attributed to the different chemical-physical conditions during the mineral formation. In particular, oceanic tremolite asbestos is enriched in Al and Na, forming a trend clearly distinct from the continental tremolites.

10.
Toxicology ; 454: 152743, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33675871

ABSTRACT

The health hazard represented by the exposure to asbestos may also concern other minerals with asbestos-like crystal habit. One of these potentially hazardous minerals is fibrous glaucophane. Fibrous glaucophane is a major component of blueschist rocks of California (USA) currently mined for construction purposes. Dust generated by the excavation activities might potentially expose workers and the general public. The aim of this study was to determine whether fibrous glaucophane induces in vitro toxicity effects on lung cells by assessing the biological responses of cultured human pleural mesothelial cells (Met-5A) and THP-1 derived macrophages exposed for 24 h and 48 h to glaucophane fibres. Crocidolite asbestos was tested for comparison. The experimental configuration of the in vitro tests included a cell culture without fibres (i.e., control), cell cultures treated with 50 µg/mL (i.e., 15.6 µg/cm2) of crocidolite fibres and 25-50-100 µg/mL (i.e., 7.8-15.6-31.2 µg/cm2) of glaucophane fibres. Results showed that fibrous glaucophane may induce a decrease in cell viability and an increase in extra-cellular lactate dehydrogenase release in the tested cell cultures in a concentration dependent mode. Moreover, it was found that fibrous glaucophane has a potency to cause oxidative stress. The biological reactivity of fibrous glaucophane confirms that it is a toxic agent and, although it apparently induces lower toxic effects compared to crocidolite, exposure to this fibre may be responsible for the development of lung diseases in exposed unprotected workers and population.


Subject(s)
Asbestos, Amphibole/toxicity , Asbestos, Crocidolite/toxicity , Macrophages/drug effects , Pleura/drug effects , Asbestos, Amphibole/administration & dosage , Asbestos, Crocidolite/administration & dosage , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Epithelial Cells/pathology , Humans , Lung/cytology , Lung/drug effects , Lung/pathology , Macrophages/pathology , Minerals/administration & dosage , Minerals/toxicity , Oxidative Stress/drug effects , Pleura/cytology , Time Factors
11.
IUCrJ ; 8(Pt 1): 76-86, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33520244

ABSTRACT

The six natural silicates known as asbestos may induce fatal lung diseases via inhalation, with a latency period of decades. The five amphibole asbestos species are assumed to be biopersistent in the lungs, and for this reason they are considered much more toxic than serpentine asbestos (chrysotile). Here, we refined the atomic structure of an amosite amphibole asbestos fibre that had remained in a human lung for ∼40 years, in order to verify the stability in vivo. The subject was originally exposed to a blend of chrysotile, amosite and crocidolite, which remained in his parietal pleura for ∼40 years. We found a few relicts of chrysotile fibres that were amorphous and magnesium depleted. Amphibole fibres that were recovered were undamaged and suitable for synchrotron X-ray micro-diffraction experiments. Our crystal structure refinement from a recovered amosite fibre demonstrates that the original atomic distribution in the crystal is intact and, consequently, that the atomic structure of amphibole asbestos fibres remains stable in the lungs for a lifetime; during which time they can cause chronic inflammation and other adverse effects that are responsible for carcinogenesis. The amosite fibres are not iron depleted proving that the iron pool for the formation of the asbestos bodies is biological (haemoglobin/plasma derived) and that it does not come from the asbestos fibres themselves.

12.
Environ Res ; 178: 108723, 2019 11.
Article in English | MEDLINE | ID: mdl-31539822

ABSTRACT

In California, the metamorphic blueschist occurrences within the Franciscan Complex are commonly composed of glaucophane, which can be found with a fibrous habit. Fibrous glaucophane's potential toxicity/pathogenicity has never been determined and it has not been considered by the International Agency for Research on Cancer (IARC) as a potential carcinogen to date. Notwithstanding, outcrops hosting fibrous glaucophane are being excavated today in California for building/construction purposes (see for example the Calaveras Dam Replacement Project - CDRP). Dust generated by these excavation activities may expose workforces and the general population to this potential natural hazard. In this work, the potential toxicity/pathogenicity of fibrous glaucophane has been determined using the fibre potential toxicity index (FPTI). This model has been applied to a representative glaucophane-rich sample collected at San Anselmo, Marin County (CA, USA), characterized using a suite of experimental techniques to determine morphometric, crystal-chemical parameters, surface reactivity, biodurability and related parameters. With respect to the asbestos minerals, the FPTI of fibrous glaucophane is remarkably higher than that of chrysotile, and comparable to that of tremolite, thus supporting the application of the precautionary approach when excavating fibrous glaucophane-rich blueschist rocks. Because fibrous glaucophane can be considered a potential health hazard, just like amphibole asbestos, it should be taken into consideration in the standard procedures for the identification and assessment of minerals fibres in soil and air samples.


Subject(s)
Asbestos, Amphibole/toxicity , Mineral Fibers/toxicity , Asbestos , Asbestos, Serpentine , California , Humans , Toxicity Tests , Virulence
13.
Chem Res Toxicol ; 32(10): 2063-2077, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31464428

ABSTRACT

Asbestos is a commercial term indicating six natural silicates with asbestiform crystal habit. Of these, five are double-chain silicates (amphibole) and one is a layer silicate (serpentine asbestos or chrysotile). Although all species are classified as human carcinogens, their degree of toxicity is still a matter of debate. Amphibole asbestos species are biopersistent in the human lungs and exert their chronic toxic action for decades, whereas chrysotile is not biopersistent and transforms into an amorphous silica structure prone to chemical/physical clearance when exposed to the acidic environment created by the alveolar macrophages. There is evidence in the literature of the toxicity of chrysotile, but its limited biopersistence is thought to explain the difference in toxicity with respect to amphibole asbestos. To date, no comprehensive model describing the toxic action of chrysotile in the lungs is available, as the structure and toxic action of the product formed by the biodissolution of chrysotile are unknown. This work is aimed at fulfilling this gap and explaining the toxic action in terms of structural, chemical, and physical properties. We show that chrysotile's fibrous structure induces cellular damage, mainly through physical interactions. Based on our previous work and novel findings, we propose the following toxicity model: inhaled chrysotile fibers exert their toxicity in the alveolar space by physical and biochemical action. The fibers are soon leached by the intracellular acid environment into a product with residual toxicity, and the dissolution process liberates toxic metals in the intracellular and extracellular environment.


Subject(s)
Asbestos, Serpentine/metabolism , Asbestos, Serpentine/toxicity , Lung/chemistry , Lung/drug effects , Asbestos, Serpentine/chemistry , Cell Survival/drug effects , Cells, Cultured , Density Functional Theory , Humans , Lung/metabolism , Models, Molecular , Molecular Structure , Powder Diffraction , THP-1 Cells
14.
Environ Res ; 171: 550-557, 2019 04.
Article in English | MEDLINE | ID: mdl-30763876

ABSTRACT

BACKGROUND: The mechanisms by which mineral fibers induce adverse effects in vivo are still not well understood. The mechanisms of fiber dissolution in the lungs and subsequent release of metals in the extracellular/intracellular environment must be taken into account. AIM: For the first time, the kinetics of release of metals during the acellular in vitro dissolution of chrysotile, crocidolite and fibrous erionite were determined. METHODS: In vitro acellular dissolution of chrysotile, crocidolite, and fibrous erionite-Na was conducted using a solution mimicking the phagolysosome environment active during the phagocytosis process (pH=4.5, at 37 °C). The kinetics of release of a representative selection of metals were determined over a period of three months. RESULTS: Despite the fact that the difference in Fe content between chrysotile and crocidolite is one order of magnitude, the much faster dissolution rate of chrysotile compared to crocidolite prompts greater release of available active surface Fe in the first weeks of the dissolution experiment and comparable amounts after 90 d. Such active iron may promote the formation of toxic hydroxyl radicals. The fast release of metals like Cr, Ni and Mn from chrysotile is also a source of concern whereas the release of V in solution is negligible. CONCLUSION: Because chrysotile undergoes fast dissolution with respect to crocidolite and fibrous erionite, it behaves like a carrier that releases its metals' cargo in the lung environment, mimicking the phenomenon that explains the toxicity of nanoparticles. Hence, the toxicity paradigm of a non biodurable fiber like chrysotile should also take into account the release of toxic metals in the intracellular/extracellular medium during the rapid dissolution process.


Subject(s)
Asbestos, Crocidolite , Asbestos, Serpentine , Metals , Models, Chemical , Asbestos , Solubility , Zeolites
15.
Environ Monit Assess ; 190(11): 646, 2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30338392

ABSTRACT

Na+ contamination of irrigation waters represents a global environmental issue for soil structure and plant production. Notwithstanding several techniques for the reduction of Na+ have been proposed in recent years, they generally exhibit disadvantages, including low recyclability and relatively high operational/maintenance costs. In this paper, we propose a natural and eco-friendly solution for the reduction of Na+ risk in coastal agricultural sandy soil (SS), vulnerable to salinity stress. A series of column leaching experiments have been conducted to assess the influence of Italian zeolite-rich tuff (natural zeolites, NZ) addition to soil (NZSS) on Na+ removal, SAR, and CROSS index, under three different salinity scenario. Result showed that the Na+ removal efficiency varied between 46.4 and 54.3% in soil amended with NZ, and analogously SAR index was significantly reduced from 7 to up 13 points. SAR and CROSS indexes resulted better correlated in SS rather than NZSS due to the influence of K+ released by NZ. In conclusion, soil amendment with NZ represents a natural and eco-friendly solution for increasing sandy soil resilience to Na+ risk.


Subject(s)
Agricultural Irrigation/methods , Sodium/analysis , Soil Pollutants/analysis , Soil/chemistry , Zeolites/chemistry , Environmental Monitoring , Salinity
16.
Environ Monit Assess ; 189(10): 523, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-28948443

ABSTRACT

Reclaimed salt marshes are fragile environments where water salinization and accumulation of heavy metals can easily occur. This type of environment constitutes a large part of the Po River Delta (Italy), where intensive agricultural activities take place. Given the higher Ni background of Po River Delta soils and its water-soluble nature, the main aim of this contribution is to understand if reclamation can influence the Ni behavior over time. In this study, we investigated the geochemical features of 40 soils sampled in two different localities from the Po River Delta with different reclamation ages. Samples of salt marsh soils reclaimed in 1964 were taken from Valle del Mezzano while soils reclaimed in 1872 were taken nearby Codigoro town. Batch solubility tests and consecutive determination of Ni in pore-water were compared to bulk physicochemical compositions of soils. Bulk Ni content of the studied soils is naturally high, since these soils originated from Po River sediments derived from the erosion of ultramafic rocks. Moreover, it seems that Ni concentration increases during soil evolution, being probably related to the degradation of serpentine. Instead, the water-soluble Ni measured in the leaching tests is greater in soils recently reclaimed compared to the oldest soils. Soil properties of two soil profiles from a reclaimed wetland area were examined to determine soil evolution over one century. Following reclamation, pedogenic processes of the superficial horizons resulted in organic matter mineralization, pH buffer, and a decrease of Ni water solubility from recently to evolved reclaimed soil.


Subject(s)
Environmental Monitoring , Nickel/analysis , Soil Pollutants/analysis , Wetlands , Agriculture , Italy , Metals, Heavy/analysis , Rivers/chemistry , Sodium Chloride , Soil/chemistry , Solubility , Water
17.
Environ Pollut ; 231(Pt 2): 1453-1462, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28916282

ABSTRACT

In agricultural lowland landscapes, intensive agricultural is accompanied by a wide use of agrochemical application, like pesticides and fertilizers. The latter often causes serious environmental threats such as N compounds leaching and surface water eutrophication; additionally, since perchlorate can be present as impurities in many fertilizers, the potential presence of perchlorates and their by-products like chlorates and chlorites in shallow groundwater could be a reason of concern. In this light, the present manuscript reports the first temporal and spatial variation of chlorates, chlorites and major anions concentrations in the shallow unconfined aquifer belonging to Ferrara province (in the Po River plain). The study was made in 56 different locations to obtain insight on groundwater chemical composition and its sediment matrix interactions. During the monitoring period from 2010 to 2011, in June 2011 a nonpoint pollution of chlorates was found in the shallow unconfined aquifer belonging to Ferrara province. Detected chlorates concentrations ranged between 0.01 and 38 mg/l with an average value of 2.9 mg/l. Chlorates were found in 49 wells out of 56 and in all types of lithology constituting the shallow aquifer. Chlorates concentrations appeared to be linked to NO3-, volatile fatty acids (VFA) and oxygen reduction potential (ORP) variations. Chlorates behaviour was related to the biodegradation of perchlorates, since perchlorates are favourable electron acceptors for the oxidation of labile dissolved organic carbon (DOC) in groundwater. Further studies must take into consideration to monitor ClO4- in pore waters and groundwater to better elucidate the mass flux of ClO4- in shallow aquifers belonging to agricultural landscapes.


Subject(s)
Agriculture , Chlorates/analysis , Environmental Monitoring , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Environmental Pollution , Fertilizers , Perchlorates , Rivers
18.
Environ Monit Assess ; 186(5): 2925-40, 2014 May.
Article in English | MEDLINE | ID: mdl-24374785

ABSTRACT

This geochemical study is focused on the easternmost part of the Po River alluvial plain in Northern Italy, which is interested by widespread agricultural activities, investigating a reclaimed sector of the Province of Ferrara, known as "Valle del Mezzano" (Mezzano Low Land, hereafter reported as MLL) characterized by peat-rich soils. The chemical-mineralogical characterization of these reclaimed soils is important to compare the local geochemical backgrounds with those recorded in other sectors of the River Po plain and to monitor if the observed concentration exceeds critical thresholds. The reported analyses include (a) measurement of the soil salinity, (b) nutrient evaluation, (c) major and trace element concentrations carried out on bulk soils, (d) tests of metal extraction with both aqua regia and EDTA to highlight the distinct elemental mobility and (e) phyto-toxicological measurement of heavy metal concentrations in plants (Lactuca sativa acephala) grown on the studied soils. The results indicate (1) high soil salinity, often with drastic increase of sodium and chloride along the soil profiles, (2) high nitrogen content (in part related to anthropogenic activities) on superficial horizons and nitrate decrease along the soil profiles and (3) comparative enrichments in heavy metals with respect to other soils of the province, which indicate that peat deposits are effective in trapping metals from anthropogenic sources. This, in turn, implies potential geochemical risks for the agricultural activities. In this regard, specific concerns are related to the high nickel and arsenic content of MLL soils due to the mobility of these elements and their attitude to be taken up by plants.


Subject(s)
Agriculture , Environmental Monitoring , Soil Pollutants/analysis , Soil/chemistry , Italy , Metals, Heavy/analysis , Plants/chemistry , Rivers/chemistry , Trace Elements/analysis
SELECTION OF CITATIONS
SEARCH DETAIL