Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Plant ; 175(3): e13934, 2023.
Article in English | MEDLINE | ID: mdl-37178362

ABSTRACT

How temperate trees respond to drier summers strongly depends on the drought susceptibility and the starch reserve of the very-fine roots (<0.5 mm in diameter). We performed morphological, physiological, chemical, and proteomic analyses on very-fine roots of Fagus sylvatica seedlings grown under moderate- and severe drought conditions. Moreover, to reveal the role of the starch reserves, a girdling approach was adopted to interrupt the flux of photosynthates toward the downstream sinks. Results show a seasonal sigmoidal growth pattern without evident mortality under moderate drought. After the severe-drought period, intact plants showed lower starch concentration and higher growth than those subjected to moderate drought, highlighting that very-fine roots rely on their starch reserves to resume growth. This behavior caused them to die with the onset of autumn, which was not observed under moderate drought. These findings indicated that extreme dry soil conditions are needed for significant root death in beech seedlings and that mortality mechanisms are defined within individual compartments. The girdling treatment showed that the physiological responses of very-fine roots to severe drought stress are critically related to the altered load or the reduced transport velocity of the phloem and that the changes in starch allocation critically alter the distribution of biomass. Proteomic evidence revealed that the phloem flux-dependent response was characterized by the decrease of carbon enzymes and the establishment of mechanisms to avoid the reduction of the osmotic potential. The response independent from the aboveground mainly involved the alteration of primary metabolic processes and cell wall-related enzymes.


Subject(s)
Fagus , Seedlings , Fagus/metabolism , Droughts , Plant Roots/metabolism , Proteomics , Trees/physiology , Starch/metabolism
2.
Sci Total Environ ; 758: 143672, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33277003

ABSTRACT

The chemical analysis of tree rings has attracted the interest of researchers in the past five decades in view of the possibility of exploiting this biological indicator as a widely available, high-resolution environmental archive. Information regarding the surrounding environment can be derived either by directly measuring environmental variables (nutrient availability, presence of pollutants, etc.) or by exploiting proxies (e.g. paleoclimatic and paleoenvironmental reconstructions). This review systematically covers the topic and provides a critical view on the reliability of dendrochemical information. First, we introduce the determinable chemical species, such as major elements, trace metals, isotopic ratios, and organic compounds, together with a brief description of their uptake mechanisms and functions in trees. Subsequently, we present the possibilities offered by analytical techniques in the field of tree ring analysis, focusing on direct methods and recent developments. The latter strongly improved the details of the accessible information, enabling the investigation of complex phenomena associated with plant life and encouraging the direct analysis of new analytes, particularly minor organic compounds. With regard to their applications, dendrochemical proxies have been used to trace several processes, such as environmental contamination, paleoclimate reconstruction, global environmental changes, tree physiology, extreme events, ecological trends, and dendroprovenance. Several case studies are discussed for each proposed application, with special emphasis on the reliability of tracing each process. Starting from the reviewed literature data, the second part of the paper is devoted to the critical assessment of the reliability of tree ring proxies. We provide an overview of the current knowledge, discuss the limitations of the inferences that may be drawn from the dendrochemical data, and provide recommendations for the best practices to be used for their validation. Finally, we present the future perspectives related to the advancements in analytical instrumentation and further extension of application fields.


Subject(s)
Environmental Pollutants , Environmental Pollution , Reproducibility of Results
3.
Sci Rep ; 10(1): 8075, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32415146

ABSTRACT

This study assesses the reliability of a non-destructive method for determining the in situ distribution of tree coarse roots within a scaled distance 6-fold the DBH by comparing the results with the actual 3D root architecture revealed by invasive methods. The root architecture of 22-year-old olive trees was determined non-destructively with a Root Detector device (Fakopp Enterprise Bt) using sonic speed and directly by a 3D digitizer (Fastrak, Polhemus) after soil removal. The radial and vertical distributions of the coarse root biomass and diameter in the soil as determined by the 3D digitizer were correlated with the root map detected by sonic speed. A highly significant correlation was observed between the coarse root biomass distribution and the sonic speed within 30 cm of soil depth, but this correlation decreased with increasing distance from the trunk, up to 120 cm. No correlations were observed between sonic speed and root diameter. The Root Detector was able to map the coarse roots of the olive tree in the soil environment, but only under certain conditions. First, root detection was more efficient within 30 cm of soil depth, provided that more than 35% of the total biomass of lateral roots occurs within this depth range. Second, the distance of 120 cm from the trunk, scaled as 6-fold the DBH, may be considered the threshold over which the sonic speed and the detection of roots markedly decreased. Third, Root Detector technology is unable to detect root size in terms of geometric parameters such as root diameter.

4.
Physiol Plant ; 156(3): 294-310, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26263877

ABSTRACT

Root activities in terms of respiration and non-structural carbohydrates (NSC) storage and mobilization have been suggested as major physiological roles in fine root lifespan. As more frequent heat waves and drought periods within the next decades are expected, to what extent does thermal acclimation in fine roots represent a mechanism to cope with such upcoming climatic conditions? In this study, the possible changes in very fine (diameter < 0.5 mm) and fine (0.5-1 mm) root morphology and physiology in terms of respiration rate and NSC [soluble sugars (SS) and starch] concentrations, were investigated on 2-year-old Fagus sylvatica saplings subjected to a simulated long-lasting heat wave event and to co-occurring soil drying. For both very fine and fine roots, soil temperature (ST) resulted inversely correlated with specific root length, respiration rates and SSs concentration, but directly correlated with root mass, root tissue density and starch concentration. In particular, starch concentration increased under 28 °C for successively decreasing under 21 °C ST. These findings showed that thermal acclimation in very fine and fine roots due to 24 days exposure to high ST (∼ 28 °C), induced starch accumulation. Such 'carbon-savings strategy' should bear the maintenance costs associated to the recovery process in case of restored favorable environmental conditions, such as those occurring at the end of a heat wave event. Drought condition seems to affect the fine root vitality much more under moderate than high temperature condition, making the temporary exposure to high ST less threatening to root vitality than expected.


Subject(s)
Acclimatization/physiology , Global Warming , Plant Roots/cytology , Plant Roots/physiology , Soil , Starch/metabolism , Biomass , Carbohydrates/analysis , Cell Respiration , Desiccation , Fagus , Hot Temperature , Multivariate Analysis , Plant Roots/anatomy & histology , Plant Roots/metabolism , Principal Component Analysis , Solubility , Time Factors , Water/chemistry
5.
Front Plant Sci ; 4: 192, 2013.
Article in English | MEDLINE | ID: mdl-23785374

ABSTRACT

Fine-root systems represent a very sensitive plant compartment to environmental changes. Gaining further knowledge about their dynamics would improve soil carbon input understanding. This paper investigates C and N concentrations in fine roots in relation to different stand characteristics resulting from conversion of coppiced forests to high forests. In order to evaluate possible interferences due to different vegetative stages of vegetation, fine-root sampling was repeated six times in each stand during the same 2008 growing season. Fine-root sampling was conducted within three different soil depths (0-10; 10-20; and 20-30 cm). Fine-root traits were measured by means of WinRHIZO software which enable us to separate them into three different diameter classes (0-0.5, 0.5-1.0 and 1.0-2.0 mm). The data collected indicate that N concentration was higher in converted stands than in the coppiced stand whereas C concentration was higher in the coppiced stand than in converted stands. Consequently the fine-root C:N ratio was significantly higher in coppiced than in converted stands and showed an inverse relationship with fine-root turnover rate, confirming a significant change of fine-root status after the conversion of a coppice to high forest.

6.
Physiol Plant ; 146(1): 39-52, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22339039

ABSTRACT

Mechanical stress is a widespread condition caused by numerous environmental factors that severely affect plant stability. In response to mechanical stress, plants have evolved complex response pathways able to detect mechanical perturbations and inducing a suite of modifications in order to improve anchorage. The response of woody roots to mechanical stresses has been studied mainly at the morphological and biomechanical level, whereas investigations on the factors triggering these important alterations are still at the initial stage. Populus has been widely used to study the response of stem to different mechanical stresses and, since it has the first forest tree genome to be decoded, represents a model woody plant for addressing questions on the mechanisms controlling adaptation of woody roots to changing environments. In this study, a morphological and physiological analysis was used to investigate factors controlling modifications in Populus nigra woody taproots subjected to mechanical stress. An experimental model analyzing spatial and temporal mechanical force distribution along the woody taproot axis enabled us to compare the events occurring in its above-, central- and below-bending sectors. Different morphogenetic responses and local variations of lignin and plant hormones content have been observed, and a relation with the distribution of the mechanical forces along the stressed woody taproots is hypothesized. We investigated the differences of the response to mechanical stress induction during the time; in this regard, we present data referring to the effect of mechanical stress on plant transition from its condition of winter dormancy to that of full vegetative activity.


Subject(s)
Lignin/metabolism , Plant Growth Regulators/metabolism , Populus/physiology , Stress, Physiological/physiology , Adaptation, Physiological , Plant Roots/metabolism , Stress, Mechanical
7.
Tree Physiol ; 27(3): 407-12, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17241982

ABSTRACT

We investigated changes in the pattern of secondary thickening along first-order lateral roots of Quercus cerris L. (turkey oak), a dominant species in the mixed forests of the Mediterranean basin. The eccentricity of radial growth was analyzed relative to the gravimetric center of the root, a measure that is unaffected by year-to-year variation in growth ring width. In cross sections collected at the taproot-lateral root junction, radial growth was greatest on the upper side of the root. However, at a distance of 10 cm from the taproot-lateral root junction, radial growth was greatest on the lower side of the root. With increasing distance from the taproot-lateral root junction, the direction of the vector of radial growth eccentricity changed in an anti-clockwise direction as viewed from the distal face of the root cross section. These findings applied to all lateral roots of the studied root system, irrespective of root size, depth of origin and axial growth direction. Ring analysis indicated that most first-order lateral roots grew to a length of 1 m in the first year.


Subject(s)
Plant Roots/physiology , Quercus/physiology , Wood/growth & development , Gravitropism , Plant Roots/anatomy & histology , Plant Roots/growth & development , Quercus/anatomy & histology , Quercus/growth & development , Wood/anatomy & histology , Wood/physiology
8.
Ann Bot ; 97(5): 857-66, 2006 May.
Article in English | MEDLINE | ID: mdl-16352708

ABSTRACT

BACKGROUND AND AIMS: Plant anchorage is governed by complex, finely regulated mechanisms that occur at a morphological, architectural and anatomical level. Spanish broom (Spartium junceum) is a woody plant frequently found on slopes--a condition that affects plant anchorage. This plant grows throughout the Mediterranean area where it plays an important role in preventing landslides. Spanish broom seedlings respond promptly to slope by altering stem and root morphology. The aim of this study was to investigate the mechanisms whereby the root system of Spanish broom seedlings adapts to ensure anchorage to the ground. METHODS: Seedlings were grown in tilted and untilted pots under controlled conditions. The root apparatus was removed at different times of growth and subjected to morphological, biomechanical and molecular analyses. KEY RESULTS: In slope-grown seedlings, changes in root system morphology, pulling strength and chemical lignin content, all features related to plant anchorage in the soil, were related to seedling age. cDNA-AFLP analysis revealed changes in the expression of several genes in root systems of slope-grown plants. BLAST analysis showed that some differentially expressed genes are homologues of genes induced by environmental stresses in other plant species, and/or are involved in the production of strengthening materials. CONCLUSION: Plants use various mechanisms/strategies to respond to slope depending on their developmental stage.


Subject(s)
Plant Roots/growth & development , Seedlings/growth & development , Spartium/growth & development , DNA, Complementary , DNA, Plant , Gene Expression Profiling , Geography , Lignin/metabolism , Plant Roots/anatomy & histology , Plant Roots/genetics , Plant Shoots/anatomy & histology , Polymorphism, Restriction Fragment Length , Seedlings/anatomy & histology , Seedlings/genetics , Sequence Analysis, DNA , Spartium/anatomy & histology , Spartium/genetics
9.
Ann Bot ; 95(2): 351-61, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15567806

ABSTRACT

BACKGROUND AND AIMS: Plant roots' growth direction has important implications for plant development and survival; moreover it plays an effective and vital role in stabilizing weathered soil on a steep slope. The aim of this work was to assess the influence of slope on the architecture of woody root systems. METHODS: Five mature, single-stemmed Quercus pubescens trees growing on a steep slope and five on a shallow slope were excavated to a root diameter of 1 cm. A very precise numeric representation of the geometry and topology of structural root architecture was gained using a low-magnetic-field digitizing device (Fastrak, Polhemus). Several characteristics of root architecture were extracted by macros, including root volume, diameter, length, number, spatial position and branching order. KEY RESULTS: The diameter at breast height (dbh) was the best predictor of the root volume but had no correlation with length and number of roots. The slope affected the root volume for each branching order, and the basal cross-sectional area (CSA), number and length of the first-order roots. Number and length of the second- and third-order laterals were closely related in both conditions, although this relationship was closer in the shallow trees, suggesting the influence of a genetic control. Sloping trees showed a clustering tendency of the first- and second-order lateral roots in the up-slope direction, suggesting that the laterals rather than the taproots provide much of the anchorage. In a steep-slope condition, the taproot tapering was positively correlated with the asymmetry magnitude of first-order roots, indicating compensation between taproot and main lateral roots' clustering tendency. CONCLUSIONS: These results suggest that on a slope, on clayey soils, root asymmetry appears to be a consequence of several environmental factors such as inclination, shallow-slides and soil compactness. In addition, this adaptive growth seems to counteract the turning moment induced by the self-loading forces acting in slope conditions, and as a consequence improves the tree stability.


Subject(s)
Plant Roots/anatomy & histology , Quercus/anatomy & histology , Environment , Models, Biological , Soil , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...