Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(19): e2311526, 2024 May.
Article in English | MEDLINE | ID: mdl-38327037

ABSTRACT

The phase-transfer ligand exchange of PbS quantum dots (QDs) has substantially simplified device fabrication giving hope for future industrial exploitation. However, this technique when applied to QDs of large size (>4 nm) gives rise to inks with poor colloidal stability, thus hindering the development of QDs photodetectors in short-wavelength infrared range. Here, it is demonstrated that methylammonium lead iodide ligands can provide sufficient passivation of PbS QDs of size up to 6.7 nm, enabling inks with a minimum of ten-week shelf-life time, as proven by optical absorption and solution-small angle X-ray scattering. Furthermore, the maximum linear electron mobility of 4.7 × 10-2 cm2 V-1 s-1 is measured in field-effect transistors fabricated with fresh inks, while transistors fabricated with the same solution after ten-week storage retain 74% of the average starting electron mobility, demonstrating the outstanding quality both of the fresh and aged inks. Finally, photodetectors fabricated via blade-coating exhibit 76% external quantum efficiency at 1300 nm and 1.8 × 1012 Jones specific detectivity, values comparable with devices fabricated using ink with lower stability and wasteful methods such as spin-coating.

2.
Nanoscale ; 15(14): 6673-6685, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36929178

ABSTRACT

Here we demonstrate blue LEDs with a peak wavelength of 481 nm, with outstanding colour purity of up to 88% (CIE coordinates (0.1092, 0.1738)), an external quantum yield of 5.2% and a luminance of 8260 cd m-2. These devices are based on quasi-2D PEA2(Cs0.75MA0.25)Pb2Br7, which is cast from solutions containing isopropylammonium (iPAm). iPAm as additive assist in supressing the formation of bulk-like phases, as pointed out by both photophysical and structural characterization. Additionally, the study of the excitation dynamics demonstrates a hindering of the energy transfer to domains of lower energy that generally undermines the performance and emission characteristics of blue-emitting LEDs based on quasi-2D perovskites. The achieved narrow distribution of quantum well sizes and the hindered energy transfer result in a thin film photoluminescence quantum yield exceeding 60%. Our work demonstrates the great potential to tailor the composition and the structure of thin films based on Ruddlesden-Popper phases to boost performance of optoelectronic devices - specifically blue perovskite LEDs.

3.
Adv Mater ; : e2301404, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36999655

ABSTRACT

Transport layers are of outmost importance for thin-film solar cells, determining not only their efficiency but also their stability. To bring one of these thin-film technologies toward mass production, many factors besides efficiency and stability become important, including the ease of deposition in a scalable manner and the cost of the different material's layers. Herein, highly efficient organic solar cells (OSCs), in the inverted structure (n-i-p), are demonstrated by using as electron transport layer (ETL) tin oxide (SnO2 ) deposited by atomic layer deposition (ALD). ALD is an industrial grade technique which can be applied at the wafer level and also in a roll-to-roll configuration. A champion power conversion efficiency (PCE) of 17.26% and a record fill factor (FF) of 79% are shown by PM6:L8-BO OSCs when using ALD-SnO2 as ETL. These devices outperform solar cells with SnO2 nanoparticles casted from solution (PCE 16.03%, FF 74%) and also those utilizing the more common sol-gel ZnO (PCE 16.84%, FF 77%). The outstanding results are attributed to a reduced charge carrier recombination at the interface between the ALD-SnO2 film and the active layer. Furthermore, a higher stability under illumination is demonstrated for the devices with ALD-SnO2 in comparison with those utilizing ZnO.

4.
J Mater Chem A Mater ; 11(5): 2419-2430, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36744007

ABSTRACT

The development of an environmentally friendly fabrication process for non-fullerene acceptor organic solar cells is an essential condition for their commercialization. However, devices fabricated by processing the active layer with green solvents still struggle to reach, in terms of efficiency, the same performance as those fabricated with halogenated solvents. The reason behind this is the non-optimal nanostructure of the active layer obtained with green solvents. Additives in solution have been used to fine-tune the nanostructure and improve the performance of organic solar cells. Therefore, the identification of non-halogenated additives and the study of their effects on the device performance and stability are of primary importance. In this work, we propose the use of diphenyl ether (DPE) as additive, in combination with the non-halogenated solvent o-xylene, to fabricate organic solar cells with a completely halogen-free process. Thanks to the addition of DPE, a best efficiency of 11.7% have been obtained for the system TPD-3F:IT-4F, an increase over 15% with respect to the efficiency of devices fabricated without additive. Remarkably, the stability under illumination of the solar cells is also improved when DPE is used. The addition of DPE has effects on the molecular organization in the active layer, with an enhancement in the donor polymer ordering, showing a higher domain purity. The resulting structure improves the charge carrier collection, leading to a superior short-circuit current and fill factor. Furthermore, a reduction of the non-radiative recombination losses and an improved exciton diffusion, are the results of the superior molecular ordering. With a comprehensive insight of the effects of DPE when used in combination with a non-halogenated solvent, our study provides an approach to make the fabrication of organic solar cell environmentally friendlier and more suitable for large scale production.

5.
J Mater Chem A Mater ; 9(42): 23783-23792, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34765223

ABSTRACT

The control of morphology and microstructure during and after the active layer processing of bulk-heterojunction solar cells is critical to obtain elevated fill factors and overall good device performance. With the recent development of non-fullerene acceptors, wide attention has been paid to improve miscibility, solubility and nanoscale separation by laborious molecular design processes and by the use of additives. Nonetheless, several post-processing strategies can equally contribute to obtain an optimum phase separation and even to an enhanced crystallinity, but their effect on performance and device lifetime of polymer/non-fullerene acceptor solar cells is still unclear. Herein, we report a systematic comparison between different post-processing treatments including thermal annealing (TA), vacuum drying (VD) and solvent vapor annealing (SVA) on the TPD-3F polymer and IT-4F non-fullerene acceptor, comparing their effects on device performance as well as on the morphology and optical and electrical properties. The optimized SVA treated devices exhibited power conversion efficiencies close to 14% with a remarkable 76% fill factor and superior short-circuit currents compared to the one of untreated devices. Moreover, SVA demonstrated improvements in device stability both under illumination and under ambient conditions. The induced phase separation and the increased crystallinity of the acceptor molecules, as revealed by GIWAXS measurements, led to increased photogenerated currents, with a more effective exciton dissociation and charge collection. The open-circuit voltage losses in the SVA and TA devices were explained by a bandgap reduction and a higher trap-assisted recombination, respectively. Overall, our study points to the role of post-processing in organic solar cell fabrication, and contributes towards a new generation of efficient and stable additive-free organic solar cells.

6.
Phys Chem Chem Phys ; 23(20): 11698-11708, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33978654

ABSTRACT

It is important, but challenging, to measure the (photo)induced switching of molecules in different chemical environments, from solution through thin layers to solid bulk crystals. We compare the cis-trans conformational switching of commercial azobenzene molecules in different liquid and solid environments: polar solutions, liquid polymers, 2D nanostructures and 3D crystals. We achieve this goal by using complementary techniques: optical absorption spectroscopy, femtosecond transient absorption spectroscopy, Kelvin probe force microscopy and reflectance spectroscopy, supported by density functional theory calculations. We could observe the same molecule showing fast switching in a few picoseconds, when studied as an isolated molecule in water, or slow switching in tens of minutes, when assembled in 3D crystals. It is worth noting that we could also observe switching for small ensembles of molecules (a few attomoles), representing an intermediate case between single molecules and bulk structures. This was achieved using Kelvin probe force microscopy to monitor the change of surface potential of nanometric thin 2D islands containing ca. 106 molecules each, self-assembled on a substrate. This approach is not limited to azobenzenes, but can be used to observe molecular switching in isolated ensembles of molecules or other nano-objects and to study synergistic molecular processes at the nanoscale.

7.
Nanoscale Adv ; 3(1): 214-222, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-36131871

ABSTRACT

The controlled modification of the electronic properties of ZnO nanorods via transition metal doping is reported. A series of ZnO nanorods were synthesized by chemical bath growth with varying Co content from 0 to 20 atomic% in the growth solution. Optoelectronic behavior was probed using cathodoluminescence, time-resolved luminescence, transient absorbance spectroscopy, and the incident photon-to-current conversion efficiency (IPCE). Analysis indicates the crucial role of surface defects in determining the electronic behavior. Significantly, Co-doping extends the light absorption of the nanorods into the visible region, increases the surface defects, and shortens the non-radiative lifetimes, while leaving the radiative lifetime constant. Furthermore, for 1 atomic% Co-doping the IPCE of the ZnO nanorods is enhanced. These results demonstrate that doping can controllably tune the functional electronic properties of ZnO nanorods for applications.

8.
Nanotechnology ; 32(15): 155504, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33378748

ABSTRACT

A graphene/Si heterojunction device has been realized to overcome many different requests necessary to make it a versatile, widely used and competitive detector. The obtained photodetectors, which operate at room temperature, are sensitive in the spectral region from ultraviolet (240 nm) to infrared (2000 nm) and they can be used in different configurations that allow a high responsivity up to 107 A W-1, a rise time of a few nanoseconds, an external quantum efficiency greater than 300%, and a linear response for different light sources. This is allowed by the high quality of the graphene deposited on a large area of 8 mm2, and by the interdigitated design of the contacts, both preserving the excellent properties of graphene when switching from nanoscale to macroscopic dimensions of commonly used devices.

9.
Nanotechnology ; 32(2): 025703, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-32937606

ABSTRACT

The knowledge of the carrier dynamics in nanostructures is of fundamental importance for the development of (opto)electronic devices. This is true for semiconducting nanostructures as well as for plasmonic nanoparticles (NPs). Indeed, improvement of photocatalytic efficiencies by combining semiconductor and plasmonic nanostructures is one of the reasons why their ultrafast dynamics are intensively studied. In this work, we will review our activity on ultrafast spectroscopy in nanostructures carried out in the recently established EuroFEL Support Laboratory. We have investigated the dynamical plasmonic responses of metal NPs both in solution and in 2D and 3D arrays on surfaces, with particular attention being paid to the effects of the NP shape and to the conversion of absorbed light into heat on a nano-localized scale. We will summarize the results obtained on the carrier dynamics in nanostructured perovskites with emphasis on the hot-carrier dynamics and in semiconductor nanosystems such as ZnSe and Si nanowires, with particular attention to the band-gap bleaching dynamics. Subsequently, the study of semiconductor-metal NP hybrids, such as CeO2-Ag NPs, ZnSe-Ag NPs and ZnSe-Au NPs, allows the discussion of interaction mechanisms such as charge carrier transfer and Förster interaction. Finally, we assess an alternative method for the sensitization of wide band gap semiconductors to visible light by discussing the relationship between the carrier dynamics of TiO2 NPs and V-doped TiO2 NPs and their catalytic properties.

10.
ACS Appl Nano Mater ; 3(8): 7781-7788, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32954224

ABSTRACT

Developing highly efficient and stable photoelectrochemical (PEC) water-splitting electrodes via inexpensive, liquid phase processing is one of the key challenges for the conversion of solar energy into hydrogen for sustainable energy production. ZnO represents one the most suitable semiconductor metal oxide alternatives because of its high electron mobility, abundance, and low cost, although its performance is limited by its lack of absorption in the visible spectrum and reduced charge separation and charge transfer efficiency. Here, we present a solution-processed water-splitting photoanode based on Co-doped ZnO nanorods (NRs) coated with a transparent functionalizing metal-organic framework (MOF). The light absorption of the ZnO NRs is engineered toward the visible region by Co-doping, while the MOF significantly improves the stability and charge separation and transfer properties of the NRs. This synergetic combination of doping and nanoscale surface functionalization boosts the current density and functional lifetime of the photoanodes while achieving an unprecedented incident photon to current efficiency (IPCE) of 75% at 350 nm, which is over 2 times that of pristine ZnO. A theoretical model and band structure for the core-shell nanostructure is provided, highlighting how this nanomaterial combination provides an attractive pathway for the design of robust and highly efficient semiconductor-based photoanodes that can be translated to other semiconducting oxide systems.

11.
J Phys Chem Lett ; 11(14): 5686-5691, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32580554

ABSTRACT

The ultrafast dynamics of excited states in cerium oxide are investigated to access the early moments of polaron formation, which can influence the photocatalytic functionality of the material. UV transient absorbance spectra of photoexcited CeO2 exhibit a bleaching of the band edge absorbance induced by the pump and a photoinduced absorbance feature assigned to Ce 4f → Ce 5d transitions. A blue shift of the spectral response of the photoinduced absorbance signal in the first picosecond after the pump excitation is attributed to the dynamical formation of small polarons with a characteristic time of 330 fs. A further important result of our work is that the combined use of steady-state and ultrafast transient absorption allows us to propose a revised value for the optical gap for ceria (Eog = 4 eV), significantly larger than usually reported.

12.
Nanotechnology ; 31(17): 174001, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-31910399

ABSTRACT

In this work we show how the optical properties of ZnSe nanowires are modified by the presence of Ag nanoparticles on the sidewalls of the ZnSe nanowires. In particular, we show that the low-temperature luminescence of the ZnSe nanowires changes its shape, enhancing the phonon replicas of impurity-related recombination and affecting rise and decay times of the transient absorption bleaching at room temperatures, with an increase of the former and a decrease of the latter. In contrast, the deposition of Au nanoparticles on ZnSe nanowires does not change the optical properties of the sample. We suggest that the mechanism underlying these experimental observations is energy transfer via a resonant interaction, based on the fact that the localized surface plasmon resonance (LSPR) of Ag nanoparticles spectrally overlaps with absorption and emission of ZnSe, while the Au LSPR does not.

13.
Front Chem ; 7: 348, 2019.
Article in English | MEDLINE | ID: mdl-31165061

ABSTRACT

The study of transition metal coordination complexes has played a key role in establishing quantum chemistry concepts such as that of ligand field theory. Furthermore, the study of the dynamics of their excited states is of primary importance in determining the de-excitation path of electrons to tailor the electronic properties required for important technological applications. This work focuses on femtosecond transient absorption spectroscopy of Cobalt tris(acetylacetonate) (Co(AcAc)3) in solution. The fast transient absorption spectroscopy has been employed to study the excited state dynamics after optical excitation. Density functional theory coupled with the polarizable continuum model has been used to characterize the geometries and the electronic states of the solvated ion. The excited states have been calculated using the time dependent density functional theory formalism. The time resolved dynamics of the ligand to metal charge transfer excitation revealed a biphasic behavior with an ultrafast rise time of 0.07 ± 0.04 ps and a decay time of 1.5 ± 0.3 ps, while the ligand field excitations dynamics is characterized by a rise time of 0.07 ± 0.04 ps and a decay time of 1.8 ± 0.3 ps. Time dependent density functional theory calculations of the spin-orbit coupling suggest that the ultrafast rise time can be related to the intersystem crossing from the originally photoexcited state. The picosecond decay is faster than that of similar cobalt coordination complexes and is mainly assigned to internal conversion within the triplet state manifold. The lack of detectable long living states (>5 ps) suggests that non-radiative decay plays an important role in the dynamics of these molecules.

14.
Nanoscale ; 11(21): 10282-10291, 2019 May 30.
Article in English | MEDLINE | ID: mdl-31099368

ABSTRACT

The coupling with plasmonic metal nanoparticles (NPs) represents a promising opportunity to sensitize wide band gap oxides to visible light. The processes which come into play after the excitation of localized surface plasmon resonances (LSPRs) in the NPs largely determine the efficiency of the charge/energy transfer from the metal NP to the oxide. We report a study of plasmon-mediated energy transfer from mass-selected silver NPs into the cerium oxide matrix in which they are embedded. Femtosecond transient absorption spectroscopy is used to probe the dynamics of charge carrier relaxation after the excitation of the LSPR of the silver nanoparticles and to evaluate the plasmon-mediated electron transfer efficiency from the silver nanoparticles to the cerium oxide. High injection efficiencies in the 6-16% range have been identified for excitation between 400 and 600 nm. These high values have been explained in terms of plasmon-mediated direct electron injection as well as indirect hot electron injection from the NPs to the oxide. The information obtained provides an important contribution towards a knowledge-driven design of efficient cerium oxide based nanostructured materials for solar to chemical energy conversion.

15.
Nanotechnology ; 30(21): 214001, 2019 May 24.
Article in English | MEDLINE | ID: mdl-30716721

ABSTRACT

We present femtosecond transient transmission (or absorbance) measurements in silicon nanowires in the energy range 1.1-3.5 eV, from below the indirect band-gap to above the direct band-gap. Our pump-probe measurements allow us to give a complete picture of the carrier dynamics in silicon. In this way we perform an experimental study with a spectral completeness that is lacking in the whole literature on carrier dynamics in silicon. A particular emphasis is given to the dynamics of the transient absorbance at the energies relative to the direct band gap at 3.3 eV. Indeed, the use of pump energies below and above 3.3 eV allowed us to disentangle the dynamics of electrons and holes in their respective bands. The band gap renormalization of the direct band gap is also investigated for different pump energies. A critical discussion is given on the results below 3.3 eV where phonon-assisted processes are required in the optical transitions.

16.
Nanotechnology ; 27(22): 225601, 2016 Jun 03.
Article in English | MEDLINE | ID: mdl-27098523

ABSTRACT

A key characteristic of semiconductor nanowires (NWs) is that they grow on any substrate that can withstand the growth conditions, paving the way for their use in flexible electronics. We report on the direct growth of crystalline silicon nanowires on polyimide substrates. The Si NWs are grown by plasma-enhanced chemical vapor deposition, which allows the growth to proceed at temperatures low enough to be compatible with plastic substrates (350 °C), where gold or indium are used as growth seeds. In is particularly interesting as the seed not only because it leads to a better NW crystal quality but also because it overcomes a core problem induced by the use of Au in silicon processing, i.e. Au creates deep carrier traps when incorporated in the nanowires.

SELECTION OF CITATIONS
SEARCH DETAIL
...