Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396698

ABSTRACT

Cells and extracts derived from adipose tissue are gaining increasing attention not only in plastic surgery and for aesthetic purposes but also in regenerative medicine. The ability of hyaluronan (HA) to support human adipose stromal cell (hASC) viability and differentiation has been investigated. However, the compatibility of adipose tissue with HA-based formulation in terms of biophysical and rheological properties has not been fully addressed, although it is a key feature for tissue integration and in vivo performance. In this study, the biophysical and biochemical properties of highly concentrated (45 mg/mL) high/low-molecular-weight HA hybrid cooperative complex were assessed with a further focus on the potential application in adipose tissue augmentation/regeneration. Specifically, HA hybrid complex rheological behavior was observed in combination with different adipose tissue ratios, and hyaluronidase-catalyzed degradation was compared to that of a high-molecular-weight HA (HHA). Moreover, the HA hybrid complex's ability to induce in vitro hASCs differentiation towards adipose phenotype was evaluated in comparison to HHA, performing Oil Red O staining and analyzing gene/protein expression of PPAR-γ, adiponectin, and leptin. Both treatments supported hASCs differentiation, with the HA hybrid complex showing better results. These outcomes may open new frontiers in regenerative medicine, supporting the injection of highly concentrated hybrid formulations in fat compartments, eventually enhancing residing staminal cell differentiation and improving cell/growth factor persistence towards tissue regeneration districts.


Subject(s)
Hyaluronic Acid , Regenerative Medicine , Humans , Hyaluronic Acid/chemistry , Adipose Tissue/metabolism , Adipocytes , Cell Differentiation , Stromal Cells , Cells, Cultured
3.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37895900

ABSTRACT

Currently, chondroitin sulfate (CS) and hyaluronic acid (HA) pharma-grade forms are used for osteoarthritis (OA) management, CS as an oral formulations component, and HA as intra-articular injective medical devices. Recently, unsulfated chondroitin, obtained through biofermentative (BC) manufacturing, has been proposed for thermally stabilized injective preparation with HA. This study aimed to highlight the specific properties of two commercial injective medical devices, one based on HA/BC complexes and the other containing HA, extractive CS, and cyclodextrins, in order to provide valuable information for joint disease treatments. Their biophysical and biomechanical features were assayed; in addition, biological tests were performed on human pathological chondrocytes. Rheological measurements displayed similar behavior, with a slightly higher G' for HA/BC, which also proved superior stability to the hyaluronidase attack. Both samples reduced the expression of specific OA-related biomarkers such as NF-kB, interleukin 6 (IL-6), and metalloprotease-13 (MMP-13). Moreover, HA/BC better ensured chondrocyte phenotype maintenance by up-regulating collagen type 2A1 (COLII) and aggrecan (AGN). Notwithstanding, the similarity of biomolecule components, the manufacturing process, raw materials characteristics, and specific concentration resulted in affecting the biomechanical and, more interestingly, the biochemical properties, suggesting potential better performances of HA/BC in joint disease treatment.

4.
Carbohydr Polym ; 278: 118908, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34973729

ABSTRACT

Among the widespread malignancies colorectal cancer is the most lethal. Treatments of this malignant tumor include surgery for lesions and metastases, radiotherapy, immunotherapy, and chemotherapy. Nevertheless, novel therapies to reduce morbidity and mortality are demanding. Natural products, such as polysaccharides, can be a valuable alternative to sometimes very toxic chemotherapeutical agents, also because they are biocompatible and biodegradable biomaterials. Microbial polysaccharides have been demonstrated to fulfill this requirement. In this paper, the results about the structure and the activity of a capsular polysaccharide isolated from the psychrotroph Pseudoalteromonas nigrifaciens Sq02-Rifr, newly isolated from the fish intestine, have been described. The characterization has been obtained by spectroscopic and chemical methods, and it is supported by the bioinformatic analysis. The polymer activates Caspases 3 and 9 on colon cancer cells CaCo-2 and HCT-116, indicating a promising antitumor effect, and suggesting a potential capacity of CPS to induce apoptosis.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Caspases/metabolism , Colonic Neoplasms/drug therapy , Polysaccharides/pharmacology , Pseudoalteromonas/chemistry , Antineoplastic Agents/chemistry , Caspases/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Drug Screening Assays, Antitumor , Humans , Polysaccharides/chemistry , Tumor Cells, Cultured
5.
Mar Drugs ; 19(11)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34822517

ABSTRACT

Lipopolysaccharides (LPS) are surface glycoconjugates embedded in the external leaflet of the outer membrane (OM) of the Gram-negative bacteria. They consist of three regions: lipid A, core oligosaccharide (OS), and O-specific polysaccharide or O-antigen. Lipid A is the glycolipid endotoxin domain that anchors the LPS molecule to the OM, and therefore, its chemical structure is crucial in the maintenance of membrane integrity in the Gram-negative bacteria. In this paper, we reported the characterization of the lipid A and OS structures from Pseudoalteromonas nigrifaciens Sq02-Rifr, which is a psychrotrophic Gram-negative bacterium isolated from the intestine of Seriola quinqueradiata. The immunomodulatory activity of both LPS and lipid A was also examined.


Subject(s)
Fishes , Immunologic Factors/pharmacology , Lipopolysaccharides/pharmacology , Pseudoalteromonas , Animals , Aquatic Organisms , Caco-2 Cells/drug effects , Humans , Immunologic Factors/chemistry , Lipopolysaccharides/chemistry , NF-kappa B/drug effects , Structure-Activity Relationship
6.
Polymers (Basel) ; 13(19)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34641024

ABSTRACT

In this research work, viscosupplements based on linear, derivatized, crosslinked and complexed HA forms were extensively examined, providing data on the hydrodynamic parameters for the water-soluble-HA-fraction, rheology, sensitivity to enzymatic hydrolysis and capacity to modulate specific biomarkers' expression in human pathological chondrocytes and synoviocytes. Soluble HA ranged from 0 to 32 mg/mL and from 150 to 1330 kDa MW. The rheological behavior spanned from purely elastic to viscoelastic, suggesting the diversity of the categories that are suitable for restoring specific/different features of the healthy synovial fluid. The rheological parameters were reduced in a diverse manner upon dilution and hyaluronidases action, indicating different durations of the viscosupplementation effect. Bioactivity was found for all the samples, increasing the expression of different matrix markers (e.g., hyaluronan-synthase); however, the hybrid cooperative complexes performed better in most of the experiments. Hybrid cooperative complexes improved COLII mRNA expression (~12-fold increase vs. CTR), proved the most effective at preserving cell phenotype. In addition, in these models, the HA samples reduced inflammation. IL-6 was down-regulated vs. CTR by linear and chemically modified HA, and especially by hybrid complexes. The results represent the first comprehensive panel of data directly comparing the diverse HA forms for intra-articular injections and provide valuable information for tailoring products' clinical use as well as for designing new, highly performing HA-formulations that can address specific needs.

7.
Carbohydr Polym ; 269: 118324, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34294336

ABSTRACT

Curdlan is a bacterial sourced polysaccharide, consisting of a linear backbone of ß-1 â†’ 3-linked glucose (Glc) units. The high interest in pharmaceutical applications of curdlan and derivatives thereof is fueling the study of multi-step sequences for regioselective modifications of its structure. Here we have developed semi-synthetic sequences based on a regioselective protection-sulfation-deprotection approach, allowing the access to some, new, low molecular weight curdlan polysaccharide derivatives with unprecedented sulfation patterns. Three different semi-synthetic schemes were investigated, all relying upon the installation of a cyclic benzylidene protecting group on Glc O-4,6-diols, followed by either direct sulfation and deprotection, or some additional steps - including a hydrolytic or oxidative cleavage of the benzylidene rings - prior to sulfation and deprotection. The six obtained polysaccharides were subjected to a detailed structural characterization by 2D-NMR analysis, revealing that some of them showed the majority of Glc units along the polymeric backbone decorated by unprecedented sulfation motifs.

SELECTION OF CITATIONS
SEARCH DETAIL
...