Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(13): eadh0123, 2024 03 29.
Article in English | MEDLINE | ID: mdl-38536929

ABSTRACT

E2-conjugating enzymes (E2s) play a central role in the enzymatic cascade that leads to the attachment of ubiquitin to a substrate. This process, termed ubiquitylation, is required to maintain cellular homeostasis and affects almost all cellular process. By interacting with multiple E3 ligases, E2s dictate the ubiquitylation landscape within the cell. Since its discovery, ubiquitylation has been regarded as a posttranslational modification that specifically targets lysine side chains (canonical ubiquitylation). We used Matrix-Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry to identify and characterize a family of E2s that are instead able to conjugate ubiquitin to serine and/or threonine. We used structural modeling and prediction tools to identify the key activity determinants that these E2s use to interact with ubiquitin as well as their substrates. Our results unveil the missing E2s necessary for noncanonical ubiquitylation, underscoring the adaptability and versatility of ubiquitin modifications.


Subject(s)
Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligases , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Ubiquitin/metabolism , Protein Processing, Post-Translational
2.
Metabolites ; 13(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37110165

ABSTRACT

We show that in S. cerevisiae the metabolic diauxic shift is associated with a H3 lysine 4 tri-methylation (H3K4me3) increase which involves a significant fraction of transcriptionally induced genes which are required for the metabolic changes, suggesting a role for histone methylation in their transcriptional regulation. We show that histone H3K4me3 around the start site correlates with transcriptional induction in some of these genes. Among the methylation-induced genes are IDP2 and ODC1, which regulate the nuclear availability of α-ketoglutarate, which, as a cofactor for Jhd2 demethylase, regulates H3K4 tri-methylation. We propose that this feedback circuit could be used to regulate the nuclear α-ketoglutarate pool concentration. We also show that yeast cells adapt to the absence of Jhd2 by decreasing Set1 methylation activity.

3.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834658

ABSTRACT

DNA double-strand breaks (DSBs) are harmful DNA lesions, which elicit catastrophic consequences for genome stability if not properly repaired. DSBs can be repaired by either non-homologous end joining (NHEJ) or homologous recombination (HR). The choice between these two pathways depends on which proteins bind to the DSB ends and how their action is regulated. NHEJ initiates with the binding of the Ku complex to the DNA ends, while HR is initiated by the nucleolytic degradation of the 5'-ended DNA strands, which requires several DNA nucleases/helicases and generates single-stranded DNA overhangs. DSB repair occurs within a precisely organized chromatin environment, where the DNA is wrapped around histone octamers to form the nucleosomes. Nucleosomes impose a barrier to the DNA end processing and repair machinery. Chromatin organization around a DSB is modified to allow proper DSB repair either by the removal of entire nucleosomes, thanks to the action of chromatin remodeling factors, or by post-translational modifications of histones, thus increasing chromatin flexibility and the accessibility of repair enzymes to the DNA. Here, we review histone post-translational modifications occurring around a DSB in the yeast Saccharomyces cerevisiae and their role in DSB repair, with particular attention to DSB repair pathway choice.


Subject(s)
Chromatin , DNA Breaks, Double-Stranded , Chromatin/metabolism , Saccharomyces cerevisiae/metabolism , Histones/metabolism , Nucleosomes/metabolism , DNA Repair , DNA/metabolism , DNA End-Joining Repair , DNA Helicases/metabolism
4.
Cancer Gene Ther ; 30(6): 822-832, 2023 06.
Article in English | MEDLINE | ID: mdl-36697763

ABSTRACT

KDM5B histone demethylase is overexpressed in many cancers and plays an ambivalent role in oncogenesis, depending on the specific context. This ambivalence could be explained by the expression of KDM5B protein isoforms with diverse functional roles, which could be present at different levels in various cancer cell lines. We show here that one of these isoforms, namely KDM5B-NTT, accumulates in breast cancer cell lines due to remarkable protein stability relative to the canonical PLU-1 isoform, which shows a much faster turnover. This isoform is the truncated and catalytically inactive product of an mRNA with a transcription start site downstream of the PLU-1 isoform, and the consequent usage of an alternative ATG for translation initiation. It also differs from the PLU-1 transcript in the inclusion of an additional exon (exon-6), previously attributed to other putative isoforms. Overexpression of this isoform in MCF7 cells leads to an increase in bulk H3K4 methylation and induces derepression of a gene cluster, including the tumor suppressor Cav1 and several genes involved in the interferon-alpha and -gamma response. We discuss the relevance of this finding considering the hypothesis that KDM5B may possess regulatory roles independent of its catalytic activity.


Subject(s)
Breast Neoplasms , Histones , Humans , Female , Methylation , Histones/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism , Breast Neoplasms/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Gene Expression , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism
5.
Life (Basel) ; 12(11)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36362982

ABSTRACT

We analyzed the morphology and the transcriptomic changes of human neural stem progenitor cells (hNSPCs) grown on laminin in adherent culture conditions and subjected to simulated microgravity for different times in a random positioning machine apparatus. Low-cell-density cultures exposed to simulated microgravity for 24 h showed cell aggregate formation and significant modulation of several genes involved in focal adhesion, cytoskeleton regulation, and cell cycle control. These effects were much more limited in hNSPCs cultured at high density in the same conditions. We also found that some of the genes modulated upon exposure to simulated microgravity showed similar changes in hNSPCs grown without laminin in non-adherent culture conditions under normal gravity. These results suggest that reduced gravity counteracts the interactions of cells with the extracellular matrix, inducing morphological and transcriptional changes that can be observed in low-density cultures.

6.
Front Genet ; 13: 896771, 2022.
Article in English | MEDLINE | ID: mdl-35495134

ABSTRACT

[This corrects the article DOI: 10.3389/fgene.2021.639602.].

7.
Front Genet ; 12: 639602, 2021.
Article in English | MEDLINE | ID: mdl-33859667

ABSTRACT

Eukaryotic genomes are wrapped around nucleosomes and organized into different levels of chromatin structure. Chromatin organization has a crucial role in regulating all cellular processes involving DNA-protein interactions, such as DNA transcription, replication, recombination and repair. Histone post-translational modifications (HPTMs) have a prominent role in chromatin regulation, acting as a sophisticated molecular code, which is interpreted by HPTM-specific effectors. Here, we review the role of histone lysine methylation changes in regulating the response to radiation-induced genotoxic damage in mammalian cells. We also discuss the role of histone methyltransferases (HMTs) and histone demethylases (HDMs) and the effects of the modulation of their expression and/or the pharmacological inhibition of their activity on the radio-sensitivity of different cell lines. Finally, we provide a bioinformatic analysis of published datasets showing how the mRNA levels of known HMTs and HDMs are modulated in different cell lines by exposure to different irradiation conditions.

8.
Emerg Top Life Sci ; 3(4): 343-355, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-33523206

ABSTRACT

In the last two decades, we have witnessed an impressive crescendo of non-coding RNA studies, due to both the development of high-throughput RNA-sequencing strategies and an ever-increasing awareness of the involvement of newly discovered ncRNA classes in complex regulatory networks. Together with excitement for the possibility to explore previously unknown layers of gene regulation, these advancements led to the realization of the need for shared criteria of data collection and analysis and for novel integrative perspectives and tools aimed at making biological sense of very large bodies of molecular information. In the last few years, efforts to respond to this need have been devoted mainly to the regulatory interactions involving ncRNAs as direct or indirect regulators of protein-coding mRNAs. Such efforts resulted in the development of new computational tools, allowing the exploitation of the information spread in numerous different ncRNA data sets to interpret transcriptome changes under physiological and pathological cell responses. While experimental validation remains essential to identify key RNA regulatory interactions, the integration of ncRNA big data, in combination with systematic literature mining, is proving to be invaluable in identifying potential new players, biomarkers and therapeutic targets in cancer and other diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...