Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063023

ABSTRACT

Mitochondrial fission and fusion are vital dynamic processes for mitochondrial quality control and for the maintenance of cellular respiration; they also play an important role in the formation and maintenance of cells with high energy demand including cardiomyocytes and neurons. The DNM1L (dynamin-1 like) gene encodes for the DRP1 protein, an evolutionary conserved member of the dynamin family that is responsible for the fission of mitochondria; it is ubiquitous but highly expressed in the developing neonatal heart. De novo heterozygous pathogenic variants in the DNM1L gene have been previously reported to be associated with neonatal or infantile-onset encephalopathy characterized by hypotonia, developmental delay and refractory epilepsy. However, cardiac involvement has been previously reported only in one case. Next-Generation Sequencing (NGS) was used to genetically assess a baby girl characterized by developmental delay with spastic-dystonic, tetraparesis and hypertrophic cardiomyopathy of the left ventricle. Histochemical analysis and spectrophotometric determination of electron transport chain were performed to characterize the muscle biopsy; moreover, the morphology of mitochondria and peroxisomes was evaluated in cultured fibroblasts as well. Herein, we expand the phenotype of DNM1L-related disorder, describing the case of a girl with a heterozygous mutation in DNM1L and affected by progressive infantile encephalopathy, with cardiomyopathy and fatal paroxysmal vomiting correlated with bulbar transitory abnormal T2 hyperintensities and diffusion-weighted imaging (DWI) restriction areas, but without epilepsy. In patients with DNM1L mutations, careful evaluation for cardiac involvement is recommended.


Subject(s)
Cardiomyopathies , Dynamins , Mutation , Humans , Female , Dynamins/genetics , Cardiomyopathies/genetics , Mutation/genetics , Infant , Fatal Outcome , Brain Diseases/genetics , Brain Diseases/pathology , GTP Phosphohydrolases/genetics
2.
EBioMedicine ; 97: 104849, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37898095

ABSTRACT

BACKGROUND: Paediatric Huntington disease with highly expanded mutations (HE-PHD; >80 CAG repeats) presents atypically, compared to adult-onset Huntington disease (AOHD), with neurodevelopmental delay, epilepsy, abnormal brain glucose metabolism, early striatal damage, and reduced lifespan. Since genetic GLUT-1 deficiency syndrome shows a symptom spectrum similar to HE-PHD, we investigated the potential role of the two main glucose transporters, GLUT-1 and GLUT-3, in HE-PHD. METHODS: We compared GLUT-1 and GLUT-3 protein expression in HE-PHD, juvenile-onset (JOHD), and AOHD brains (n = 2; n = 3; n = 6) and periphery (n = 3; n = 2; n = 2) versus healthy adult controls (n = 6; n = 6). We also investigated mitochondrial complexes and hexokinase-II protein expression. FINDINGS: GLUT-1 and GLUT-3 expression were significantly lower in HE-PHD frontal cortex (p = 0.009, 95% [CI 13.4, 14.7]; p = 0.017, 95% [CI 14.2, 14.5]) versus controls. In fibroblasts, GLUT-1 and GLUT-3 expression were lower compared to controls (p < 0.0001, 95% [CI 0.91, 1.09]; p = 0.046, 95% [CI 0.93, 1.07]). In the frontal cortex, this occurred without evidence of extensive neuronal degeneration. Patients with HE-PHD had deregulated mitochondrial complex expression, particularly complexes II-III, levels of which were lower in frontal cortex versus controls (p = 0.027, 95% [CI 17.1, 17.6]; p = 0.002, 95% CI [16.6, 16.9]) and patients with AOHD (p = 0.052, 95% [CI 17.0, 17.6]; p = 0.002, 95% [CI 16.6, 16.7]). Hexokinase-II expression was also lower in HE-PHD frontal cortex and striatum versus controls (p = 0.010, 95% [CI 17.8, 18.2]; p = 0.045, 95% [CI 18.6, 18.7]) and in frontal cortex versus patients with AOHD (p = 0.013, 95% [CI 17.7, 18.1]). Expression JOHD levels were consistently different to those of HE-PHD but similar to those of AOHD. INTERPRETATION: Our data suggest a dysfunctional hypometabolic state occurring specifically in paediatric Huntington disease brains. FUNDING: '5 × 1000' Personal Income Tax donation to LIRH Foundation; Italian Ministry of HealthRC2301MH04 and RF-2016-02364123 to CSS.


Subject(s)
Hexokinase , Huntington Disease , Adult , Child , Humans , Brain/metabolism , Case-Control Studies , Fibroblasts/metabolism , Hexokinase/metabolism , Huntington Disease/genetics
4.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36901881

ABSTRACT

Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase holoenzyme, which adds telomeric DNA repeats on chromosome ends to counteract telomere shortening. In addition, there is evidence of TERT non-canonical functions, among which is an antioxidant role. In order to better investigate this role, we tested the response to X-rays and H2O2 treatment in hTERT-overexpressing human fibroblasts (HF-TERT). We observed in HF-TERT a reduced induction of reactive oxygen species and an increased expression of the proteins involved in the antioxidant defense. Therefore, we also tested a possible role of TERT inside mitochondria. We confirmed TERT mitochondrial localization, which increases after oxidative stress (OS) induced by H2O2 treatment. We next evaluated some mitochondrial markers. The basal mitochondria quantity appeared reduced in HF-TERT compared to normal fibroblasts and an additional reduction was observed after OS; nevertheless, the mitochondrial membrane potential and morphology were better conserved in HF-TERT. Our results suggest a protective function of TERT against OS, also preserving mitochondrial functionality.


Subject(s)
Antioxidants , Telomerase , Humans , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Mitochondria/metabolism , Oxidative Stress , Telomerase/metabolism
5.
Biochim Biophys Acta Gen Subj ; 1867(1): 130255, 2023 01.
Article in English | MEDLINE | ID: mdl-36265765

ABSTRACT

The mitochondrial translation machinery allows the synthesis of the mitochondrial-encoded subunits of the electron transport chain. Defects in this process lead to mitochondrial physiology failure; in humans, they are associated with early-onset, extremely variable and often fatal disorder. The use of a simple model to study the mitoribosomal defects is mandatory to overcome the difficulty to analyze the impact of pathological mutations in humans. In this paper we study in nematode Caenorhabditis elegans the silencing effect of the mrpl-24 gene, coding for the mitochondrial ribosomal protein L-24 (MRPL-24). This is a structural protein of the large subunit 39S of the mitoribosome and its effective physiological function is not completely elucidated. We have evaluated the nematode's fitness fault and investigated the mitochondrial defects associated with MRPL-24 depletion. The oxidative stress response activation due to the mitochondrial alteration has been also investigated as a compensatory physiological mechanism. For the first time, we demonstrated that MRPL-24 reduction increases the expression of detoxifying enzymes such as SOD-3 and GST-4 through the involvement of transcription factor SKN-1. BACKGROUND: In humans, mutations in genes encoding mitochondrial ribosomal proteins (MRPs) often cause early-onset, severe, fatal and extremely variable clinical defects. Mitochondrial ribosomal protein L-24 (MRPL24) is a structural protein of the large subunit 39S of the mitoribosome. It is highly conserved in different species and its effective physiological function is not completely elucidated. METHODS: We characterized the MRPL24 functionality using the animal model Caenorhabditis elegans. We performed the RNA mediated interference (RNAi) by exposing the nematodes' embryos to double-stranded RNA (dsRNA) specific for the MRPL-24 coding sequence. We investigated for the first time in C. elegans, the involvement of the MRPL-24 on the nematode's fitness and its mitochondrial physiology. RESULTS: Mrpl-24 silencing in C. elegans negatively affected the larval development, progeny production and body bending. The analysis of mitochondrial functionality revealed loss of mitochondrial network and impairment of mitochondrial functionality, as the decrease of oxygen consumption rate and the ROS production, as well as reduction of mitochondrial protein synthesis. Finally, the MRPL-24 depletion activated the oxidative stress response, increasing the expression levels of two detoxifying enzymes, SOD-3 and GST-4. CONCLUSIONS: In C. elegans the MRPL-24 depletion activated the oxidative stress response. This appears as a compensatory mechanism to the alteration of the mitochondrial functionality and requires the involvement of transcription factor SKN-1. GENERAL SIGNIFICANCE: C. elegans resulted in a good model for the study of mitochondrial disorders and its use as a simple and pluricellular organism could open interesting perspectives to better investigate the pathologic mechanisms underlying these devastating diseases.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Humans , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Oxidative Stress/genetics , Superoxide Dismutase/metabolism
6.
Front Oncol ; 13: 1324013, 2023.
Article in English | MEDLINE | ID: mdl-38260858

ABSTRACT

The increased availability of genetic technologies has significantly improved the detection of novel germline variants conferring a predisposition to tumor development in patients with malignant disease. The identification of variants of uncertain significance (VUS) represents a challenge for the clinician, leading to difficulties in decision-making regarding medical management, the surveillance program, and genetic counseling. Moreover, it can generate confusion and anxiety for patients and their family members. Herein, we report a 5-year-old girl carrying a VUS in the Succinate Dehydrogenase Complex Subunit C (SHDC) gene who had been previously treated for high-risk neuroblastoma and subsequently followed by the development of secondary acute myeloid leukemia. In this context, we describe how functional studies can provide additional insight on gene function determining whether the variant interferes with normal protein function or stability.

7.
Am J Hum Genet ; 109(9): 1692-1712, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055214

ABSTRACT

Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.


Subject(s)
Calcium-Binding Proteins , Mitochondrial Diseases , Calcium-Binding Proteins/genetics , Homeostasis/genetics , Humans , Membrane Proteins/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Nervous System/metabolism , Saccharomyces cerevisiae/metabolism
8.
Clin Genet ; 102(1): 56-60, 2022 07.
Article in English | MEDLINE | ID: mdl-35246835

ABSTRACT

Genetic defect in the nuclear encoded subunits of cytochrome c oxidase are very rare. To date, most deleterious variants affect the mitochondrially encoded subunits of complex IV and the nuclear genes encoded for assembly factors. A biallelic pathogenic variant in the mitochondrial complex IV subunit COX5A was previously reported in a couple of sibs with failure to thrive, lactic acidosis and pulmonary hypertension and a lethal phenotype. Here, we describe a second family with a 11-year-old girl presenting with failure to thrive, lactic acidosis, hypoglycemia and short stature. Clinical exome revealed the homozygous missense variant c.266 T > G in COX5A, which produces a drop of the corresponding protein and a reduction of the COX activity. Compared to the previous observation, this girl showed an attenuated metabolic derangement without involvement of the cardiovascular system and neurodevelopment. Our observation confirms that COX5A recessive variants may cause mitochondrial disease and expands the associated phenotype to less severe presentations.


Subject(s)
Acidosis, Lactic , Dwarfism , Hypoglycemia , Acidosis, Lactic/genetics , Acidosis, Lactic/pathology , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Failure to Thrive/genetics , Homozygote , Humans , Hypoglycemia/genetics , Phenotype
9.
Hum Mol Genet ; 31(4): 561-575, 2022 02 21.
Article in English | MEDLINE | ID: mdl-34508588

ABSTRACT

Germline-activating mutations in HRAS cause Costello syndrome (CS), a cancer prone multisystem disorder characterized by reduced postnatal growth. In CS, poor weight gain and growth are not caused by low caloric intake. Here, we show that constitutive plasma membrane translocation and activation of the GLUT4 glucose transporter, via reactive oxygen species-dependent AMP-activated protein kinase α and p38 hyperactivation, occurs in primary fibroblasts of CS patients, resulting in accelerated glycolysis and increased fatty acid synthesis and storage as lipid droplets. An accelerated autophagic flux was also identified as contributing to the increased energetic expenditure in CS. Concomitant inhibition of p38 and PI3K signaling by wortmannin was able to rescue both the dysregulated glucose intake and accelerated autophagic flux. Our findings provide a mechanistic link between upregulated HRAS function, defective growth and increased resting energetic expenditure in CS, and document that targeting p38 and PI3K signaling is able to revert this metabolic dysfunction.


Subject(s)
Costello Syndrome , Costello Syndrome/genetics , Costello Syndrome/metabolism , Fibroblasts/metabolism , Humans , Oxidation-Reduction , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction/genetics
10.
Hum Mutat ; 42(6): 699-710, 2021 06.
Article in English | MEDLINE | ID: mdl-33715266

ABSTRACT

Isolated biochemical deficiency of mitochondrial complex I is the most frequent signature among mitochondrial diseases and is associated with a wide variety of clinical symptoms. Leigh syndrome represents the most frequent neuroradiological finding in patients with complex I defect and more than 80 monogenic causes have been involved in the disease. In this report, we describe seven patients from four unrelated families harboring novel NDUFA12 variants, with six of them presenting with Leigh syndrome. Molecular genetic characterization was performed using next-generation sequencing combined with the Sanger method. Biochemical and protein studies were achieved by enzymatic activities, blue native gel electrophoresis, and western blot analysis. All patients displayed novel homozygous mutations in the NDUFA12 gene, leading to the virtual absence of the corresponding protein. Surprisingly, despite the fact that in none of the analyzed patients, NDUFA12 protein was detected, they present a different onset and clinical course of the disease. Our report expands the array of genetic alterations in NDUFA12 and underlines phenotype variability associated with NDUFA12 defect.


Subject(s)
Leigh Disease/genetics , Mitochondrial Diseases/genetics , NADPH Dehydrogenase/genetics , Adolescent , Child , Child, Preschool , Cohort Studies , Consanguinity , Electron Transport Complex I/genetics , Family , Female , Genetic Predisposition to Disease , Humans , Italy , Leigh Disease/complications , Leigh Disease/pathology , Male , Mitochondrial Diseases/complications , Mitochondrial Diseases/pathology , Phenotype , Polymorphism, Single Nucleotide
11.
Genes (Basel) ; 12(2)2021 02 10.
Article in English | MEDLINE | ID: mdl-33578638

ABSTRACT

Mitochondria do not exist as individual entities in the cell-conversely, they constitute an interconnected community governed by the constant and opposite process of fission and fusion. The mitochondrial fission leads to the formation of smaller mitochondria, promoting the biogenesis of new organelles. On the other hand, following the fusion process, mitochondria appear as longer and interconnected tubules, which enhance the communication with other organelles. Both fission and fusion are carried out by a small number of highly conserved guanosine triphosphatase proteins and their interactors. Disruption of this equilibrium has been associated with several pathological conditions, ranging from cancer to neurodegeneration, and mutations in genes involved in mitochondrial fission and fusion have been reported to be the cause of a subset of neurogenetic disorders.


Subject(s)
Gene Expression Regulation/drug effects , Mitochondria/drug effects , Mitochondrial Diseases/drug therapy , Neoplasms/drug therapy , Neurodegenerative Diseases/drug therapy , Protective Agents/therapeutic use , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Dynamins/genetics , Dynamins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Mitochondrial Dynamics/drug effects , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Organelle Biogenesis , Peptide Elongation Factors/genetics , Peptide Elongation Factors/metabolism , Signal Transduction
12.
Neurobiol Dis ; 141: 104880, 2020 07.
Article in English | MEDLINE | ID: mdl-32344152

ABSTRACT

Mitochondrial ribosomal protein large 24 (MRPL24) is 1 of the 82 protein components of mitochondrial ribosomes, playing an essential role in the mitochondrial translation process. We report here on a baby girl with cerebellar atrophy, choreoathetosis of limbs and face, intellectual disability and a combined defect of complexes I and IV in muscle biopsy, caused by a homozygous missense mutation identified in MRPL24. The variant predicts a Leu91Pro substitution at an evolutionarily conserved site. Using human mutant cells and the zebrafish model, we demonstrated the pathological role of the identified variant. In fact, in fibroblasts we observed a significant reduction of MRPL24 protein and of mitochondrial respiratory chain complex I and IV subunits, as well a markedly reduced synthesis of the mtDNA-encoded peptides. In zebrafish we demonstrated that the orthologue gene is expressed in metabolically active tissues, and that gene knockdown induced locomotion impairment, structural defects and low ATP production. The motor phenotype was complemented by human WT but not mutant cRNA. Moreover, sucrose density gradient fractionation showed perturbed assembly of large subunit mitoribosomal proteins, suggesting that the mutation leads to a conformational change in MRPL24, which is expected to cause an aberrant interaction of the protein with other components of the 39S mitoribosomal subunit.


Subject(s)
Mitochondrial Proteins/genetics , Movement Disorders/genetics , Ribosomal Proteins/genetics , Animals , Cerebellum/pathology , Female , Humans , Infant , Leviviridae , Male , Movement Disorders/pathology , Quadriceps Muscle/pathology , Zebrafish
13.
Parkinsonism Relat Disord ; 72: 75-79, 2020 03.
Article in English | MEDLINE | ID: mdl-32120303

ABSTRACT

OBJECTIVE: To investigate the molecular cause(s) underlying a severe form of infantile-onset parkinsonism and characterize functionally the identified variants. METHODS: A trio-based whole exome sequencing (WES) approach was used to identify the candidate variants underlying the disorder. In silico modeling, and in vitro and in vivo studies were performed to explore the impact of these variants on protein function and relevant cellular processes. RESULTS: WES analysis identified biallelic variants in WARS2, encoding the mitochondrial tryptophanyl tRNA synthetase (mtTrpRS), a gene whose mutations have recently been associated with multiple neurological phenotypes, including childhood-onset, levodopa-responsive or unresponsive parkinsonism in a few patients. A substantial reduction of mtTrpRS levels in mitochondria and reduced OXPHOS function was demonstrated, supporting their pathogenicity. Based on the infantile-onset and severity of the phenotype, additional variants were considered as possible genetic modifiers. Functional assessment of a selected panel of candidates pointed to a de novo missense mutation in CHRNA6, encoding the α6 subunit of neuronal nicotinic receptors, which are involved in the cholinergic modulation of dopamine release in the striatum, as a second event likely contributing to the phenotype. In silico, in vitro (Xenopus oocytes and GH4C1 cells) and in vivo (C. elegans) analyses demonstrated the disruptive effects of the mutation on acetylcholine receptor structure and function. CONCLUSION: Our findings consolidate the association between biallelic WARS2 mutations and movement disorders, and suggest CHRNA6 as a genetic modifier of the phenotype.


Subject(s)
Parkinsonian Disorders/genetics , Receptors, Nicotinic/genetics , Tryptophan-tRNA Ligase/genetics , Age of Onset , Child , Humans , Male , Mutation , Severity of Illness Index , Exome Sequencing
14.
Parkinsonism Relat Disord ; 68: 8-16, 2019 11.
Article in English | MEDLINE | ID: mdl-31621627

ABSTRACT

Cerebellar ataxia is a hallmark of coenzyme Q10 (CoQ10) deficiency associated with COQ8A mutations. We present four patients, one with novel COQ8A pathogenic variants all with early, prominent handwriting impairment, dystonia and only mild ataxia. To better define the phenotypic spectrum and course of COQ8A disease, we review the clinical presentation and evolution in 47 reported cases. Individuals with COQ8A mutation display great clinical variability and unpredictable responses to CoQ10 supplementation. Onset is typically during infancy or childhood with ataxic features associated with developmental delay or regression. When disease onset is later in life, first symptoms can include: incoordination, epilepsy, tremor, and deterioration of writing. The natural history is characterized by a progression to a multisystem brain disease dominated by ataxia, with disease severity inversely correlated with age at onset. Six previously reported cases share with ours, a clinical phenotype characterized by slowly progressive or static writing difficulties, focal dystonia, and speech disorder, with only minimal ataxia. The combination of writing difficulty, dystonia and ataxia is a distinctive constellation that is reminiscent of a previously described clinical entity called Dystonia Ataxia Syndrome (DYTCA) and is an important clinical indicator of COQ8A mutations, even when ataxia is mild or absent.


Subject(s)
Ataxia , Disease Progression , Dystonic Disorders , Handwriting , Heterozygote , Mitochondrial Diseases , Mitochondrial Proteins/genetics , Muscle Weakness , Ubiquinone/deficiency , Adult , Ataxia/complications , Ataxia/epidemiology , Ataxia/etiology , Ataxia/genetics , Ataxia/physiopathology , Child , Dystonic Disorders/epidemiology , Dystonic Disorders/etiology , Dystonic Disorders/genetics , Dystonic Disorders/physiopathology , Female , Humans , Male , Middle Aged , Mitochondrial Diseases/complications , Mitochondrial Diseases/epidemiology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/physiopathology , Muscle Weakness/complications , Muscle Weakness/epidemiology , Muscle Weakness/genetics , Muscle Weakness/physiopathology , Ubiquinone/genetics , Young Adult
15.
Hum Mutat ; 40(10): 1731-1748, 2019 10.
Article in English | MEDLINE | ID: mdl-31045291

ABSTRACT

Mutations in either the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA metabolism, including ELAC2. The ELAC2 gene codes for the mitochondrial RNase Z, responsible for endonucleolytic cleavage of the 3' ends of mitochondrial pre-tRNAs. Here, we report the identification of 16 novel ELAC2 variants in individuals presenting with mitochondrial respiratory chain deficiency, hypertrophic cardiomyopathy (HCM), and lactic acidosis. We provide evidence for the pathogenicity of the novel missense variants by studying the RNase Z activity in an in vitro system. We also modeled the residues affected by a missense mutation in solved RNase Z structures, providing insight into enzyme structure and function. Finally, we show that primary fibroblasts from the affected individuals have elevated levels of unprocessed mitochondrial RNA precursors. Our study thus broadly confirms the correlation of ELAC2 variants with severe infantile-onset forms of HCM and mitochondrial respiratory chain dysfunction. One rare missense variant associated with the occurrence of prostate cancer (p.Arg781His) impairs the mitochondrial RNase Z activity of ELAC2, suggesting a functional link between tumorigenesis and mitochondrial RNA metabolism.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Genes, Mitochondrial , Genetic Predisposition to Disease , Mutation , Neoplasm Proteins/genetics , RNA Processing, Post-Transcriptional , RNA, Transfer/genetics , Alleles , Amino Acid Substitution , Biomarkers , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/therapy , Cohort Studies , Enzyme Activation , Female , Gene Expression , Genetic Association Studies , Genotype , Humans , Infant , Kinetics , Male , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Phenotype , Protein Conformation , Protein Interaction Domains and Motifs , Structure-Activity Relationship , Substrate Specificity
16.
Hum Mutat ; 40(5): 601-618, 2019 05.
Article in English | MEDLINE | ID: mdl-30801875

ABSTRACT

Mitochondria are highly dynamic organelles, undergoing continuous fission and fusion. The DNM1L (dynamin-1 like) gene encodes for the DRP1 protein, an evolutionary conserved member of the dynamin family, responsible for fission of mitochondria, and having a role in the division of peroxisomes, as well. DRP1 impairment is implicated in several neurological disorders and associated with either de novo dominant or compound heterozygous mutations. In five patients presenting with severe epileptic encephalopathy, we identified five de novo dominant DNM1L variants, the pathogenicity of which was validated in a yeast model. Fluorescence microscopy revealed abnormally elongated mitochondria and aberrant peroxisomes in mutant fibroblasts, indicating impaired fission of these organelles. Moreover, a very peculiar finding in our cohort of patients was the presence, in muscle biopsy, of core like areas with oxidative enzyme alterations, suggesting an abnormal distribution of mitochondria in the muscle tissue.


Subject(s)
Dynamins/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Mitochondrial Encephalomyopathies/diagnosis , Mitochondrial Encephalomyopathies/genetics , Muscles/metabolism , Muscles/pathology , Biomarkers , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , DNA Mutational Analysis , Dynamins/chemistry , Fibroblasts/metabolism , Genetic Association Studies/methods , Humans , Magnetic Resonance Imaging/methods , Models, Biological , Muscles/ultrastructure , Mutation , Protein Conformation , Structure-Activity Relationship
18.
Neurology ; 91(4): e319-e330, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29959261

ABSTRACT

OBJECTIVE: To characterize clinically and molecularly an early-onset, variably progressive neurodegenerative disorder characterized by a cerebellar syndrome with severe ataxia, gaze palsy, dyskinesia, dystonia, and cognitive decline affecting 11 individuals from 3 consanguineous families. METHODS: We used whole-exome sequencing (WES) (families 1 and 2) and a combined approach based on homozygosity mapping and WES (family 3). We performed in vitro studies to explore the effect of the nontruncating SQSTM1 mutation on protein function and the effect of impaired SQSTM1 function on autophagy. We analyzed the consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in vivo using zebrafish as a model. RESULTS: We identified 3 homozygous inactivating variants, including a splice site substitution (c.301+2T>A) causing aberrant transcript processing and accelerated degradation of a resulting protein lacking exon 2, as well as 2 truncating changes (c.875_876insT and c.934_936delinsTGA). We show that loss of SQSTM1 causes impaired production of ubiquitin-positive protein aggregates in response to misfolded protein stress and decelerated autophagic flux. The consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in zebrafish documented a variable but reproducible phenotype characterized by cerebellum anomalies ranging from depletion of axonal connections to complete atrophy. We provide a detailed clinical characterization of the disorder; the natural history is reported for 2 siblings who have been followed up for >20 years. CONCLUSIONS: This study offers an accurate clinical characterization of this recently recognized neurodegenerative disorder caused by biallelic inactivating mutations in SQSTM1 and links this phenotype to defective selective autophagy.


Subject(s)
Alleles , Disease Progression , Mutation/genetics , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/genetics , Sequestosome-1 Protein/genetics , Adolescent , Adult , Age of Onset , Animals , Female , Humans , Male , Pedigree , Exome Sequencing/methods , Young Adult , Zebrafish
19.
Hum Mol Genet ; 27(15): 2739-2754, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29767723

ABSTRACT

Multiple mitochondrial dysfunction syndromes (MMDS) comprise a group of severe autosomal recessive diseases characterized by impaired respiration and lipoic acid metabolism, resulting in infantile-onset mitochondrial encephalopathy, non-ketotic hyperglycinemia, myopathy, lactic acidosis and early death. Four different MMDS have been analyzed in detail according to the genes involved in the disease, MMDS1 (NFU1), MMDS2 (BOLA3), MMDS3 (IBA57) and MMDS4 (ISCA2). MMDS5 has recently been described in a clinical case report of patients carrying a mutation in ISCA1, but with no further functional analysis. ISCA1 encodes a mitochondrial protein essential for the assembly of [4Fe-4S] clusters in key metabolic and respiratory enzymes. Here, we describe a patient with a severe early onset leukodystrophy, multiple defects of respiratory complexes and a severe impairment of lipoic acid synthesis. A homozygous missense mutation in ISCA1 (c.29T>G; p.V10G) identified by targeted MitoExome sequencing resulted in dramatic reduction of ISCA1 protein level. The mutation located in the uncleaved presequence severely affected both mitochondrial import and stability of ISCA1. Down-regulation of ISCA1 in HeLa cells by RNAi impaired the biogenesis of mitochondrial [4Fe-4S] proteins, yet could be complemented by expression of wild-type ISCA1. In contrast, the ISCA1 p.V10G mutant protein only partially complemented the defects, closely resembling the biochemical phenotypes observed for ISCA1 patient fibroblasts. Collectively, our comprehensive clinical and biochemical investigations show that the ISCA1 p.V10G mutation functionally impaired mitochondrial [4Fe-4S] protein assembly and hence was causative for the observed clinical defects.


Subject(s)
Iron-Sulfur Proteins/metabolism , Leukoencephalopathies/genetics , Mitochondrial Diseases/etiology , Mitochondrial Proteins/metabolism , Mutation , Age of Onset , Brain/diagnostic imaging , Brain/pathology , Child , Female , Genetic Complementation Test , HeLa Cells , Homozygote , Humans , Iron-Sulfur Proteins/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics
20.
Orphanet J Rare Dis ; 12(1): 89, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28494813

ABSTRACT

BACKGROUND: Heterozygous mutations in OPA1 are a common cause of autosomal dominant optic atrophy, sometimes associated with extra-ocular manifestations. Few cases harboring compound heterozygous OPA1 mutations have been described manifesting complex neurodegenerative disorders in addition to optic atrophy. RESULTS: We report here three patients: one boy showing an early-onset mitochondrial disorder with hypotonia, ataxia and neuropathy that was severely progressive, leading to early death because of multiorgan failure; two unrelated sporadic girls manifesting a spastic ataxic syndrome associated with peripheral neuropathy and, only in one, optic atrophy. Using a targeted resequencing of 132 genes associated with mitochondrial disorders, in two probands we found compound heterozygous mutations in OPA1: in the first a 5 nucleotide deletion, causing a frameshift and insertion of a premature stop codon (p.Ser64Asnfs*7), and a missense change (p.Ile437Met), which has recently been reported to have clinical impact; in the second, a novel missense change (p.Val988Phe) co-occurred with the p.Ile437Met substitution. In the third patient a homozygous mutation, c.1180G > A (p.Ala394Thr) in OPA1 was detected by a trio-based whole exome sequencing approach. One of the patients presented also variants in mitochondrial DNA that may have contributed to the peculiar phenotype. The deleterious effect of the identified missense changes was experimentally validated in yeast model. OPA1 level was reduced in available patients' biological samples, and a clearly fragmented mitochondrial network was observed in patients' fibroblasts. CONCLUSIONS: This report provides evidence that bi-allelic OPA1 mutations may lead to complex and severe multi-system recessive mitochondrial disorders, where optic atrophy might not represent the main feature.


Subject(s)
Brain Diseases/genetics , GTP Phosphohydrolases/genetics , Optic Atrophy, Autosomal Dominant/genetics , Optic Atrophy/genetics , Blotting, Western , Brain Diseases/metabolism , Child, Preschool , Electrophysiology , GTP Phosphohydrolases/metabolism , Humans , Infant , Male , Microscopy, Fluorescence , Mutation , Optic Atrophy/metabolism , Optic Atrophy, Autosomal Dominant/metabolism , Tomography, Optical Coherence , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL