Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Dalton Trans ; 50(46): 17029-17040, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34761774

ABSTRACT

Two new transition metal complexes with 1-methylimidazole (1-MeIm) and azide as ligands, namely, [Co(1-MeIm)4(N3)2] (1) and [Ni(1-MeIm)4(N3)2] (2), have been synthesized and characterized by IR, Raman, UV-Vis and XPS spectroscopy. Their crystal structures were solved by single-crystal X-ray diffraction. The supramolecular self-assembly of the two complexes is governed by non-classical C-H⋯N hydrogen bonds and C-H⋯π interactions. Lattice energies and intermolecular interaction energies for various molecular pairs are quantified using the PIXEL method. DFT computational studies to assess the binding energy through modern tools like non-covalent interaction (NCI plots) analysis and reduced density gradient (RDG) analysis have also been carried out. A detailed analysis of geometric descriptors revealed the existence of quasi-isostructural pairs or 'main-part' isostructuralism in a series formed by 1, 2, and a related cadmium complex, being more evident in the 1/2 pair. DFT studies using theoretical models have been used to disclose the relative importance of the H-bond and C-H⋯π noncovalent interactions. Magnetic measurements for compound 1 show weak ferrimagnetic coupling between adjacent M(II) centers, mediated by H-bonding and C-H⋯π non-covalent interactions.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt B: 635-43, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25448963

ABSTRACT

The experimental and theoretical study on the molecular structure and a new vibrational analysis of 4-(Dimethylamino) Benzaldehyde (DMABA) is presented. The IR and Raman spectra were recorded in solid state. Optimized geometry, vibrational frequencies and various thermodynamic parameters of the title compound were calculated using DFT methods and are in agreement with the experimental values. A detailed interpretation of the IR and Raman spectra of the title compound were reported. The stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using NBO analysis and AIM approach. The HOMO and LUMO analysis were used to determine the charge transfer within the molecule and some molecular properties such as ionization potential, electron affinity, electronegativity, chemical potential, hardness, softness and global electrophilicity index. The TD-DFT approach was applied to assign the electronic transitions observed in the UV-visible spectrum measured experimentally. Molecular electrostatic potential map was performed by the DFT method. According to DSC measurements, the substance presents a melting point of 72.34°C and decomposes at temperatures higher than 193°C.


Subject(s)
Benzaldehydes/chemistry , Methylation , Models, Molecular , Quantum Theory , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Static Electricity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL