Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4612, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37553361

ABSTRACT

Earthquakes often occur along faults in the presence of hot, pressurized water. Here we exploit a new experimental device to study friction in gabbro faults with water in vapor, liquid and supercritical states (water temperature and pressure up to 400 °C and 30 MPa, respectively). The experimental faults are sheared over slip velocities from 1 µm/s to 100 mm/s and slip distances up to 3 m (seismic deformation conditions). Here, we show with water in the vapor state, fault friction decreases with increasing slip distance and velocity. However, when water is in the liquid or supercritical state, friction decreases with slip distance, regardless of slip velocity. We propose that the formation of weak minerals, the chemical bonding properties of water and (elasto)hydrodynamic lubrication may explain the weakening behavior of the experimental faults. In nature, the transition of water from liquid or supercritical to vapor state can cause an abrupt increase in fault friction that can stop or delay the nucleation phase of an earthquake.

2.
Nat Commun ; 14(1): 1136, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36890136

ABSTRACT

Earthquakes occur because faults weaken with increasing slip and slip rate. Thermal pressurization (TP) of trapped pore fluids is deemed to be a widespread coseismic fault weakening mechanism. Yet, due to technical challenges, experimental evidence of TP is limited. Here, by exploiting a novel experimental configuration, we simulate seismic slip pulses (slip rate 2.0 m/s) on dolerite-built faults under pore fluid pressures up to 25 MPa. We measure transient sharp weakening, down to almost zero friction and concurrent with a spike in pore fluid pressure, which interrupts the exponential-decay slip weakening. The interpretation of mechanical and microstructural data plus numerical modeling suggests that wear and local melting processes in experimental faults generate ultra-fine materials to seal the pressurized pore water, causing transient TP spikes. Our work suggests that, with wear-induced sealing, TP may also occur in relatively permeable faults and could be quite common in nature.

3.
Tectonics ; 40(8): e2021TC006818, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34594061

ABSTRACT

How major crustal-scale seismogenic faults nucleate and evolve in crystalline basements represents a long-standing, but poorly understood, issue in structural geology and fault mechanics. Here, we address the spatio-temporal evolution of the Bolfin Fault Zone (BFZ), a >40-km-long exhumed seismogenic splay fault of the 1000-km-long strike-slip Atacama Fault System. The BFZ has a sinuous fault trace across the Mesozoic magmatic arc of the Coastal Cordillera (Northern Chile) and formed during the oblique subduction of the Aluk plate beneath the South American plate. Seismic faulting occurred at 5-7 km depth and ≤ 300°C in a fluid-rich environment as recorded by extensive propylitic alteration and epidote-chlorite veining. Ancient (125-118 Ma) seismicity is attested by the widespread occurrence of pseudotachylytes. Field geologic surveys indicate nucleation of the BFZ on precursory geometrical anisotropies represented by magmatic foliation of plutons (northern and central segments) and andesitic dyke swarms (southern segment) within the heterogeneous crystalline basement. Seismic faulting exploited the segments of precursory anisotropies that were optimal to favorably oriented with respect to the long-term far-stress field associated with the oblique ancient subduction. The large-scale sinuous geometry of the BFZ resulted from the hard linkage of these anisotropy-pinned segments during fault growth.

4.
Geophys Res Lett ; 48(9): e2020GL091856, 2021 May 16.
Article in English | MEDLINE | ID: mdl-34219843

ABSTRACT

The understanding of earthquake physics is hindered by the poor knowledge of fault strength and temperature evolution during seismic slip. Experiments reproducing seismic velocity (∼1 m/s) allow us to measure both the evolution of fault strength and the associated temperature increase due to frictional heating. However, temperature measurements were performed with techniques having insufficient spatial and temporal resolution. Here we conduct high velocity friction experiments on Carrara marble rock samples sheared at 20 MPa normal stress, velocity of 0.3 and 6 m/s, and 20 m of total displacement. We measured the temperature evolution of the fault surface at the acquisition rate of 1 kHz and over a spatial resolution of ∼40 µm with an optical fiber conveying the infrared radiation to a two-color pyrometer. Temperatures up to 1,250°C and low coseismic fault shear strength are compatible with the activation of grain size dependent viscous creep.

5.
Tectonics ; 40(10): e2021TC006698, 2021 Oct.
Article in English | MEDLINE | ID: mdl-35874293

ABSTRACT

Active faulting and deep-seated gravitational slope deformation (DGSD) are common geological hazards in mountain belts worldwide. In the Italian central Apennines, kilometer-thick carbonate sedimentary sequences are cut by major active normal faults that shape the landscape, generating intermontane basins. Geomorphological observations suggest that the DGSDs are commonly located in fault footwalls. We selected five mountain slopes affected by DGSD and exposing the footwall of active seismogenic normal faults exhumed from 2 to 0.5 km depth. Field structural analysis of the slopes shows that DGSDs exploit preexisting surfaces formed both at depth and near the ground surface by tectonic faulting and, locally, by gravitational collapse. Furthermore, the exposure of sharp scarps along mountain slopes in the central Apennines can be enhanced either by surface seismic rupturing or gravitational movements (e.g., DGSD) or by a combination of the two. At the microscale, DGSDs accommodate deformation mechanisms similar to those associated with tectonic faulting. The widespread compaction of micro-grains (e.g., clast indentation), observed in the matrix of both normal faults and DGSD slip zones, is consistent with clast fragmentation, fluid-infiltration, and congruent pressure-solution active at low ambient temperatures (<60°C) and lithostatic pressures (<80 MPa). Although clast comminution is more intense in the slip zones of normal faults because of the larger displacement accommodated, we are not able to find microstructural markers that allow us to uniquely distinguish faults from DGSDs.

6.
J Geophys Res Solid Earth ; 124(1): 689-708, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31007999

ABSTRACT

Recent Global Positioning System observations of major earthquakes such as the 2014 Chile megathrust show a slow preslip phase releasing a significant portion of the total moment (Ruiz et al., 2014, https://doi.org/10.1126/science.1256074). Despite advances from theoretical stability analysis (Rubin & Ampuero, 2005, https://doi.org/10.1029/2005JB003686; Ruina, 1983, https://doi.org/10.1029/jb088ib12p10359) and modeling (Kaneko et al., 2017, https://doi.org/10.1002/2016GL071569), it is not fully understood what controls the prevalence and the amount of slip in the nucleation process. Here we present laboratory observations of slow slip preceding dynamic rupture, where we observe a dependence of nucleation size and position on the loading rate (laboratory equivalent of tectonic loading rate). The setup is composed of two polycarbonate plates under direct shear with a 30-cm long slip interface. The results of our laboratory experiments are in agreement with the preslip model outlined by Ellsworth and Beroza (1995, https://doi.org/10.1126/science.268.5212.851) and observed in laboratory experiments (Latour et al., 2013, https://doi.org/10.1002/grl.50974; Nielsen et al., 2010, https://doi.org/10.1111/j.1365-246x.2009.04444.x; Ohnaka & Kuwahara, 1990, https://doi.org/10.1016/0040-1951(90)90138-X), which show a slow slip followed by an acceleration up to dynamic rupture velocity. However, further complexity arises from the effect of (1) rate of shear loading and (2) inhomogeneities on the fault surface. In particular, we show that when the loading rate is increased from 10-2 to 6 MPa/s, the nucleation length can shrink by a factor of 3, and the rupture nucleates consistently on higher shear stress areas. The nucleation lengths measured fall within the range of the theoretical limits L b and L ∞ derived by Rubin and Ampuero (2005, https://doi.org/10.1029/2005JB003686) for rate-and-state friction laws.

7.
Nat Commun ; 10(1): 320, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30659201

ABSTRACT

During earthquake propagation, geologic faults lose their strength, then strengthen as slip slows and stops. Many slip-weakening mechanisms are active in the upper-mid crust, but healing is not always well-explained. Here we show that the distinct structure and rate-dependent properties of amorphous nanopowder (not silica gel) formed by grinding of quartz can cause extreme strength loss at high slip rates. We propose a weakening and related strengthening mechanism that may act throughout the quartz-bearing continental crust. The action of two slip rate-dependent mechanisms offers a plausible explanation for the observed weakening: thermally-enhanced plasticity, and particulate flow aided by hydrodynamic lubrication. Rapid cooling of the particles causes rapid strengthening, and inter-particle bonds form at longer timescales. The timescales of these two processes correspond to the timescales of post-seismic healing observed in earthquakes. In natural faults, this nanopowder crystallizes to quartz over 10s-100s years, leaving veins which may be indistinguishable from common quartz veins.

8.
Geophys Res Lett ; 45(12): 6032-6041, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-30147198

ABSTRACT

The safe application of geological carbon storage depends also on the seismic hazard associated with fluid injection. In this regard, we performed friction experiments using a rotary shear apparatus on precut basalts with variable degree of hydrothermal alteration by injecting distilled H2O, pure CO2, and H2O + CO2 fluid mixtures under temperature, fluid pressure, and stress conditions relevant for large-scale subsurface CO2 storage reservoirs. In all experiments, seismic slip was preceded by short-lived slip bursts. Seismic slip occurred at equivalent fluid pressures and normal stresses regardless of the fluid injected and degree of alteration of basalts. Injection of fluids caused also carbonation reactions and crystallization of new dolomite grains in the basalt-hosted faults sheared in H2O + CO2 fluid mixtures. Fast mineral carbonation in the experiments might be explained by shear heating during seismic slip, evidencing the high chemical reactivity of basalts to H2O + CO2 mixtures.

9.
Sci Rep ; 7(1): 664, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28386064

ABSTRACT

Many earthquakes propagate up to the Earth's surface producing surface ruptures. Seismic slip propagation is facilitated by along-fault low dynamic frictional resistance, which is controlled by a number of physico-chemical lubrication mechanisms. In particular, rotary shear experiments conducted at seismic slip rates (1 ms-1) show that phyllosilicates can facilitate co-seismic slip along faults during earthquakes. This evidence is crucial for hazard assessment along oceanic subduction zones, where pelagic clays participate in seismic slip propagation. Conversely, the reason why, in continental domains, co-seismic slip along faults can propagate up to the Earth's surface is still poorly understood. We document the occurrence of micrometer-thick phyllosilicate-bearing layers along a carbonate-hosted seismogenic extensional fault in the central Apennines, Italy. Using friction experiments, we demonstrate that, at seismic slip rates (1 ms-1), similar calcite gouges with pre-existing phyllosilicate-bearing (clay content ≤3 wt.%) micro-layers weaken faster than calcite gouges or mixed calcite-phyllosilicate gouges. We thus propose that, within calcite gouge, ultra-low clay content (≤3 wt.%) localized along micrometer-thick layers can facilitate seismic slip propagation during earthquakes in continental domains, possibly enhancing surface displacement.

10.
Sci Rep ; 5: 16112, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26552964

ABSTRACT

Rupture fronts can cause fault displacement, reaching speeds up to several ms(-1) within a few milliseconds, at any distance away from the earthquake nucleation area. In the case of silicate-bearing rocks the abrupt slip acceleration results in melting at asperity contacts causing a large reduction in fault frictional strength (i.e., flash weakening). Flash weakening is also observed in experiments performed in carbonate-bearing rocks but evidence for melting is lacking. To unravel the micro-physical mechanisms associated with flash weakening in carbonates, experiments were conducted on pre-cut Carrara marble cylinders using a rotary shear apparatus at conditions relevant to earthquakes propagation. In the first 5 mm of slip the shear stress was reduced up to 30% and CO2 was released. Focused ion beam, scanning and transmission electron microscopy investigations of the slipping zones reveal the presence of calcite nanograins and amorphous carbon. We interpret the CO2 release, the formation of nanograins and amorphous carbon to be the result of a shock-like stress release associated with the migration of fast-moving dislocations. Amorphous carbon, given its low friction coefficient, is responsible for flash weakening and promotes the propagation of the seismic rupture in carbonate-bearing fault patches.

11.
Science ; 322(5899): 207-8, 2008 Oct 10.
Article in English | MEDLINE | ID: mdl-18845739
12.
Science ; 311(5761): 647-9, 2006 Feb 03.
Article in English | MEDLINE | ID: mdl-16456076

ABSTRACT

Melt produced by friction during earthquakes may act either as a coseismic fault lubricant or as a viscous brake. Here we estimate the dynamic shear resistance (tau(f)) in the presence of friction-induced melts from both exhumed faults and high-velocity (1.28 meters per second) frictional experiments. Exhumed faults within granitoids (tonalites) indicate low tau(f) at 10 kilometers in depth. Friction experiments on tonalite samples show that tau(f) depends weakly on normal stress. Extrapolation of experimental data yields tau(f) values consistent with the field estimates and well below the Byerlee strength. We conclude that friction-induced melts can lubricate faults at intermediate crustal depths.

13.
Nature ; 436(7053): 1009-12, 2005 Aug 18.
Article in English | MEDLINE | ID: mdl-16107846

ABSTRACT

Most of our knowledge about co-seismic rupture propagation is derived from inversion and interpretation of strong-ground-motion seismograms, laboratory experiments on rock and rock-analogue material, or inferred from theoretical and numerical elastodynamic models. However, additional information on dynamic rupture processes can be provided by direct observation of faults exhumed at the Earth's surface. Pseudotachylytes (solidified friction-induced melts) are the most certain fault-rock indicator of seismicity on ancient faults. Here we show how the asymmetry in distribution and the orientation of pseudotachylyte-filled secondary fractures around an exhumed fault can be used to reconstruct the earthquake rupture directivity, rupture velocity and fracture energy, by comparison with the theoretical dynamic stress field computed around propagating fractures. In particular, the studied natural network of pseudotachylytes is consistent with a dominant propagation direction during repeated seismic events and subsonic rupture propagation close to the Rayleigh wave velocity.

14.
Nature ; 427(6973): 436-9, 2004 Jan 29.
Article in English | MEDLINE | ID: mdl-14749829

ABSTRACT

An important unsolved problem in earthquake mechanics is to determine the resistance to slip on faults in the Earth's crust during earthquakes. Knowledge of coseismic slip resistance is critical for understanding the magnitude of shear-stress reduction and hence the near-fault acceleration that can occur during earthquakes, which affects the amount of damage that earthquakes are capable of causing. In particular, a long-unresolved problem is the apparently low strength of major faults, which may be caused by low coseismic frictional resistance. The frictional properties of rocks at slip velocities up to 3 mm s(-1) and for slip displacements characteristic of large earthquakes have been recently simulated under laboratory conditions. Here we report data on quartz rocks that indicate an extraordinary progressive decrease in frictional resistance with increasing slip velocity above 1 mm s(-1). This reduction extrapolates to zero friction at seismic slip rates of approximately 1 m s(-1), and appears to be due to the formation of a thin layer of silica gel on the fault surface: it may explain the low strength of major faults during earthquakes.

SELECTION OF CITATIONS
SEARCH DETAIL