Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139929

ABSTRACT

In this study, sodium alginate (SA) was oxidized with potassium periodate to produce an alginate-based tanning agent. Using OSA as a biodegradable tanning agent and a nano-hydroxyapatite (nano-HAp) low concentration suspension to give flame retardancy to leather, eco-design concepts were applied to establish a chrome-, aldehyde-, and phenol-free tanning process. Micro-DSC, 1H unilateral nuclear magnetic resonance (NMR), attenuated total reflection mode Fourier transform infrared spectroscopy (FTIR-ATR), and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) were used to investigate the complex matrix collagen-OSA-nano-HAp. Micro-differential scanning calorimetry (micro-DSC) was used to assess OSA's ability to interact with collagen and stabilize the collagen-OSA matrix, while 1H unilateral (NMR) was used to investigate the aqueous environment and its limitations around collagen molecules caused by their association with OSA and nano-HAp. Industrial standard tests were used to assess the mechanical properties and fire resistance of the new leather prototype. The findings reported here indicate that both OSA and nano-HAp are suitable alternatives for cleaner tanning technologies and more sustainable leather.

2.
Dalton Trans ; 52(18): 6152-6165, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37073995

ABSTRACT

A series of medium- and long-chain zinc carboxylates (zinc octanoate, zinc nonanoate, zinc decanoate, zinc undecanoate, zinc dodecanoate, zinc pivalate, zinc stearate, zinc palmitate, zinc oleate, and zinc azelate) was analyzed by ultra-high-field 67Zn NMR spectroscopy up to 35.2 T, as well as 13C NMR and FTIR spectroscopy. We also report the single-crystal X-ray diffraction structures of zinc nonanoate, zinc decanoate, and zinc oleate-the first long-chain carboxylate single-crystals to be reported for zinc. The NMR and X-ray diffraction data suggest that the carboxylates exist in three distinct geometric groups, based on structural and spectroscopic parameters. The ssNMR results presented here present a future for dynamic nuclear polarization (DNP)-NMR-based minimally invasive methods for testing artwork for the presence of zinc carboxylates.

3.
Foods ; 10(10)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34681489

ABSTRACT

A multidisciplinary protocol is proposed to monitor the preservation of fresh pumpkin samples (FP) using three commercial polymeric films: A made of biodegradable cellophane from regenerated cellulose pulp; B from corn starch, cassava and eucalyptus, C made of polylactic acid from corn starch, and a polyethylene film used as reference (REF). Chemical, mechanical and microbiological analyses were applied on packaging and fresh and packaged samples at different times. After an 11-day period, NMR spectroscopy results showed a sucrose increase and a malic acid decrease in all the biofilms with respect to FP; fructose, glucose, galactose levels remained quite constant in biofilms B and C; the most abundant amino acids remained quite constant in biofilm A and decreased significantly in biofilm B. From microbiological analyses total microbial count was below the threshold value up to 7 days for samples in all the films, and 11 days for biofilm C. The lactic acid bacteria, and yeasts and molds counts were below the acceptability limit during the 11 days for all packages. In the case of biofilm C, the most promising packaging for microbiological point of view, aroma analysis was also carried out. In this paper, you can find all the analysis performed and all the values found.

4.
Sci Rep ; 10(1): 18320, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33110102

ABSTRACT

The quantitative evaluation of the three-dimensional (3D) morphology of porous composite materials is important for understanding mass transport phenomena, which further impact their functionalities and durability. Reactive porous paint materials are composites in nature and widely used in arts and technological applications. In artistic oil paintings, ambient moisture and water and organic solvents used in conservation treatments are known to trigger multiple physical and chemical degradation processes; however, there is no complete physical model that can quantitatively describe their transport in the paint films. In the present study, model oil paints with lead white (2PbCO3·Pb(OH)2) and zinc white (ZnO) pigments, which are frequently found in artistic oil paintings and are associated with the widespread heavy metal soap deterioration, were studied using synchrotron X-ray nano-tomography and unilateral nuclear magnetic resonance. This study aims to establish a relationship among the paints' compositions, the 3D morphological properties and degradation. This connection is crucial for establishing reliable models that can predict transport properties of solvents used in conservation treatments and of species involved in deterioration reactions, such as soap formation.

5.
Magn Reson Chem ; 58(9): 798-811, 2020 09.
Article in English | MEDLINE | ID: mdl-32247290

ABSTRACT

Heavy metal carboxylate or soap formation is a widespread deterioration problem affecting oil paintings and other works of art bearing oil-based media. Lead soaps are prevalent in traditional oil paintings because lead white was the white pigment most frequently chosen by old masters for the paints and in some cases for the ground preparations, until the development of other white pigments from approximately the middle of the 18th century on, and because of the wide use of lead-tin yellow. In the latter part of the 19th century, lead white began to be replaced by zinc white. The factors that influence soap formation have been the focus of intense study starting in the late 1990s. Since 2014, nuclear magnetic resonance (NMR) studies have contributed a unique perspective on the issue by providing chemical, structural, and dynamic information about the species involved in the process, as well as the effects of environmental conditions such as relative humidity and temperature on the kinetics of the reaction(s). In this review, we explore recent insights into soap formation gained through solid-state NMR and single-sided NMR techniques.

6.
Magn Reson Chem ; 58(9): 840-859, 2020 09.
Article in English | MEDLINE | ID: mdl-32250473

ABSTRACT

Ancient vegetable tanned leathers and parchments are very complex materials in which both different manufacturing and deterioration processes make their study and chemical characterisation difficult. In this research, solid-state nuclear magnetic resonance (NMR) spectroscopy was applied to identify different tannin families (condensed and hydrolysable) in historical leather objects such as bookbindings, wall upholsters, footwear and accessories, and military apparel. Furthermore, leather deterioration with special focus on collagen gelatinisation was investigated. A comparison with Fourier transform infrared (FTIR) spectroscopy and micro-differential scanning calorimetry (micro-DSC) was also performed to support the 13 C CP-MAS NMR findings and to point out the advantages and limitations of solid-state NMR in analysing historical and archaeological leathers. A wide database of NMR and FTIR spectra of commercial tannins compounds was also collected in order to characterise historical and archaeological leathers.

7.
Magn Reson Chem ; 58(9): 785-791, 2020 09.
Article in English | MEDLINE | ID: mdl-33448454
8.
Magn Reson Chem ; 58(9): 783-784, 2020 09.
Article in English | MEDLINE | ID: mdl-33448472
9.
Chemphyschem ; 21(1): 113-119, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31536159

ABSTRACT

Heavy metal carboxylate degradation severely affects thousands of oil paintings. Relative humidity has been reported to accelerate the rate of the reactions. To evaluate its role further, water diffusion and molecular mobility of protons in linseed oil-based lead white paints were studied by unilateral NMR and 1 H HRMAS spectroscopy. The results indicate that exposure to high %RH for relatively long times affects the dynamics of the oil paint's mobile fraction and that the effect is more pronounced as the thickness of the film increases. It was found that the paint can absorb appreciable amounts of water and has a porosity of approximately 6 % available for the diffusion of water, for which a regime of restricted diffusion was observed. Furthermore, the presence of bound and free-moving water, due to the possible formation of hydrated ionic-group clusters, supports the hypothesis of a polymeric/ionomeric network, as well as regions of essentially water free to move as in the bulk. The findings allow a better understanding of the role of water as a factor activating the degradation process in linseed oil-based lead white paints.

10.
Appl Spectrosc ; 70(8): 1346-55, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27340217

ABSTRACT

(13)C cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) and µ-Raman spectroscopy were applied to characterize Sicilian amber samples. The main goal of this work was to supply a complete study of simetite, highlighting discriminating criteria useful to distinguish Sicilian amber from fossil resins from other regions and laying the foundations for building a spectroscopic database of Sicilian amber. With this aim, a private collection of unrefined simetite samples and fossil resins from the Baltic region and Dominican Republic was analyzed. Overall, the obtained spectra permitted simetite to be distinguished from the other resins. In addition, principal component analysis (PCA) was applied to the spectroscopic data, allowing the clustering of simetite samples with respect to the Baltic and Dominican samples and to group the simetite samples in two sets, depending on their maturity. Finally, the analysis of loadings allowed for a better understanding of the spectral features that mainly influenced the discriminating characteristics of the investigated ambers.

11.
Magn Reson Chem ; 53(1): 64-77, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25178927

ABSTRACT

Consolidation and protection are among the most important treatments usually carried out in conservation of stone artifacts and monuments. In this paper, portable unilateral NMR and conventional techniques were used for investigating new multifunctional treatments based on tetraethoxysilane, silica, and polytetrafluoroethylene nanoparticles. The study was carried out on a very complex and heterogeneous porous stone such as tuff. NMR study allowed to obtain detailed information on the penetration depth of treatments, the hydrophobic effect, and changes in the open porosity caused by treatments. Physical and chemical inhomogeneities between the impregnated layers of tuff and the layers underneath were also detected. The average pores radius and pores interconnection obtained from NMR diffusion measurements were used for the first time to compare effects of different consolidating and/or protective treatments on stone. Because unilateral NMR technique is neither destructive nor invasive, investigation of treatments can be also carried out and optimized directly on buildings and monuments of interest for Cultural Heritage.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Nanoparticles , Colloids , Diffusion , Humans , Polytetrafluoroethylene , Porosity , Silanes , Silicon Dioxide
12.
Sensors (Basel) ; 14(4): 6977-97, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24755519

ABSTRACT

In recent years nuclear magnetic resonance (NMR) sensors have been increasingly applied to investigate, characterize and monitor objects of cultural heritage interest. NMR is not confined to a few specific applications, but rather its use can be successfully extended to a wide number of different cultural heritage issues. A breakthrough has surely been the recent development of portable NMR sensors which can be applied in situ for non-destructive and non-invasive investigations. In this paper three studies illustrating the potential of NMR sensors in this field of research are reported.


Subject(s)
Culture , Magnetic Resonance Spectroscopy/instrumentation , Paintings , Humidity , Imaging, Three-Dimensional , Porosity , Time Factors
13.
Anal Bioanal Chem ; 405(26): 8669-75, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23978933

ABSTRACT

NMR stratigraphy was used to investigate in situ, non-destructively and non-invasively, the stratigraphy of hydrogen-rich layers of an ancient Nubian detached mural painting. Because of the detachment procedure, a complex multi-layered artefact was obtained, where, besides layers of the original mural painting, also the materials used during the procedure all became constitutive parts of the artefact. NMR measurements in situ enabled monitoring of the state of conservation of the artefact and planning of minimum representative sampling to validate results obtained in situ by solid-state NMR analysis of the samples. This analysis enabled chemical characterization of all organic materials. Use of reference compounds and prepared specimens assisted data interpretation.

15.
Anal Bioanal Chem ; 400(9): 3151-64, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21491108

ABSTRACT

Hydrophobic treatment is one of the most important interventions usually carried out in the conservation of stone artifacts and monuments. The analytical study reported in this paper was aimed at answering general questions such as the penetration depth of a hydrophobic treatment into a porous material, its capability to impair the water absorption, how the presence of a treatment may change the open porosity available to the water, and how a treatment may affect the diffusion of water inside a porous structure. Also, inhomogeneities in treated stones due to sharp variations of the amount of the absorbed product in the porous material were evidenced and scaled. The results of this fully non-invasive analytical study were rationalized in terms of new parameters obtained by a suitable process of nuclear magnetic resonance data. These analytical parameters reported here for the first time, namely the hydrophobic efficiency, the penetration depth, and angles describing changes in slope in depth profiles, gave important information in assessing the performance of a treatment.

16.
Anal Bioanal Chem ; 399(9): 3117-31, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20931176

ABSTRACT

A multi-technique approach was employed to study a decorated Egyptian wooden sarcophagus (XXV-XXVI dynasty, Third Intermediate Period), belonging to the Museo del Vicino Oriente of the Sapienza University of Rome. Portable non-invasive unilateral NMR was applied to evaluate the conservation state of the sarcophagus. Moreover, using unilateral NMR, a non-invasive analytical protocol was established to detect the presence of organic substances on the surface and/or embedded in the wooden matrix. This protocol allowed for an educated sampling campaign aimed at further investigating the state of degradation of the wood and the presence of organic substances by (13)C cross polarization magic angle spinning (CPMAS) NMR spectroscopy. The composition of the painted layer was analysed by optical microscopy (OM), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Raman and surface enhanced (resonance) Raman spectroscopy (SERS/SERRS), infrared and GC-MS techniques, evidencing original components such as clay minerals, Egyptian green, indigo, natural gums, and also highlighting restoration pigments and alteration compounds. The identification of the wood, of great value for the reconstruction of the history of the artwork, was achieved by means of optical microscopy.

17.
Anal Bioanal Chem ; 396(5): 1885-96, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20094881

ABSTRACT

As is well known, the deterioration of wall paintings due to the capillary rise of water through the walls is a very widespread problem. In this paper, a study of microclimate monitoring, unilateral nuclear magnetic resonance (NMR), and evanescent-field dielectrometry (EFD) was applied to map non-destructively, in situ, and in a quantitative way the distribution of the moisture in an ancient deteriorated wall painting of the eleventh century. Both unilateral NMR and EFD are quite new, fully portable, and non-destructive techniques, and their combination is absolutely new. The approach reported here is proposed as a new analytical protocol to afford the problem of mapping, non-destructively, the moisture in a deteriorated wall painting in a hypogeous building such as that of the second level of St. Clement Basilica, Rome (Italy), where the use of IR thermography is impaired due to the environmental conditions, and the gravimetric tests are forbidden due to the preciousness of the artifact. The moisture distribution was mapped at different depths, from the very first layers of the painted film to a depth of 2 cm. It has also been shown how the map obtained in the first layers of the artwork is affected by the environmental conditions typical of a hypogeous building, whereas the maps obtained at higher depths are representative of the moisture due to the capillary rise of water from the ground. The quantitative analysis of the moisture was performed by calibrating NMR and EFD signals with purposely prepared specimens. This study may be applied before and after performing any intervention aimed at restoring and improving the state of conservation of this type of artwork and reducing the dampness or extracting salts (driven by the variation of moisture content) and monitoring the effectiveness of the performed interventions during the time. This protocol is applicable to any type of porous material.

SELECTION OF CITATIONS
SEARCH DETAIL
...