Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 42(7): 2530-9, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23212118

ABSTRACT

Mo(NMe(2))(4) and the tridentate, dipyrrolyl ligand H(2)dpma(mes) were found to form 5-coordinate Mo(NMe(2))(2)(dpma(mes)) (1), which exhibits spin-crossover behaviour in solution. The complex is a ground state singlet with a barrier of 1150 cm(-1) for production of the triplet in d(8)-toluene. The complex reacts with 1,1-disubstituted hydrazines or O-benzylhydroxylamine to produce nitrido MoN(NMe(2))(dpma(mes)). The mechanism of the 1,1-dimethylhydrazine reaction with 1 was examined along with the mechanism of substitution of NMe(2) with H(2)NNMe(2) in a diamagnetic zirconium analogue. The proposed mechanism involves production of a hydrazido(1-) intermediate, Mo(NMe(2))(NHNMe(2))(dpma(mes)), which undergoes an α,ß-proton shift and N-N bond cleavage with metal oxidation to form the nitrido. The rate law for the reaction was found to be -d[1]/dt = k(obs)[1][hydrazine] by initial rate experiments and examination of the full reaction profile. This conversion from hydrazido(1-) to nitrido is somewhat analogous to the proposed mechanism for O-O bond cleavage in some peroxidases.


Subject(s)
Hydrazines/chemistry , Molybdenum/chemistry , Nitrogen/chemistry , Organometallic Compounds/chemistry , Quaternary Ammonium Compounds/chemistry
2.
Inorg Chem ; 51(2): 1187-200, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22200335

ABSTRACT

Synthetic protocols and characterization data for a variety of chromium(VI) nitrido compounds of the general formula NCr(NPr(i)(2))(2)X are reported, where X = NPr(i)(2) (1), I (2), Cl (3), Br (4), OTf (5), 1-adamantoxide (6), OSiPh(3) (7), O(2)CPh (8), OBu(t)(F6) (9), OPh (10), O-p-(OMe)C(6)H(4) (11), O-p-(SMe)C(6)H(4) (12), O-p-(Bu(t))C(6)H(4) (13), O-p-(F)C(6)H(4) (14), O-p-(Cl)C(6)H(4) (15), O-p-(CF(3))C(6)H(4) (16), OC(6)F(5) (17), κ(O)-N-oxy-phthalimide (18), SPh (19), OCH(2)Ph (20), NO(3) (21), pyrrolyl (22), 3-C(6)F(5)-pyrrolyl (23), 3-[3,5-(CF(3))(2)C(6)H(3)]pyrrolyl (24), indolyl (25), carbazolyl (26), N(Me)Ph (27), κ(N)-NCO (28), κ(N)-NCS (29), CN (30), NMe(2) (31), F (33). Several different techniques were employed in the syntheses, including nitrogen-atom transfer for the formation of 1. A cationic chromium complex [NCr(NPr(i)(2))(2)(DMAP)]BF(4) (32) was used as an intermediate for the production of 33, which was produced by tin-catalyzed degredation of the salt. Using spin saturation transfer or line shape analysis, the free energy barriers for diisopropylamido rotation were studied. It is proposed that the estimated enthalpic barriers, Ligand Donor Parameters (LDPs), for amido rotation can be used to parametrize the donor abilities of this diverse set of anionic ligands toward transition metal centers in low d-electron counts. The new LDPs do not correlate well to the pK(a) value of X. Conversely, the LDP values of phenoxide ligands do correlate with Hammett parameters for the para-substituents. Literature data for (13)C NMR chemical shifts for a tungsten-based system with various X ligands plotted versus LDP provided a linear fit. In addition, the angular overlap model derived e(σ) + e(π) values for chromium(III) ammine complexes correlate with LDP values. Also discussed is the correlation with XTiCp*(2) spectroscopic data. X-ray diffraction has been used used to characterize 31 of the compounds. From the X-ray diffraction data, steric parameters for the ligands using the Percent Buried Volume and Solid Angle techniques were found.

SELECTION OF CITATIONS
SEARCH DETAIL
...