Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Neurosurgery ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747596

ABSTRACT

BACKGROUND AND OBJECTIVES: Despite profound medico-socio-legal consequences of traumatic brain injury (TBI) from intimate partner violence and domestic violence (IPV/DV), the incidence and acute outcomes of concurrent IPV/DV-TBI are not well understood. We examined US IPV/DV patients with/without TBI (IPV/DV-TBI; non-TBI) using the National Trauma Data Bank. We hypothesized IPV/DV-TBI would be associated with elevated morbidity. METHODS: National Trauma Data Bank Trauma Quality Programs Participant Use Files years 2018 to 2021 were queried for patients aged ≥18 years with IPV/DV using International Classification of Diseases, Tenth Revision external cause codes. TBI/non-TBI was defined using International Classification of Diseases, Tenth Revision diagnosis codes. TBI severity was defined by the Glasgow Coma Scale (severe = 3-8, moderate = 9-12, and mild = 13-15). Outcomes were intensive care unit (ICU) admission, in-hospital mortality, length of stay (LOS), and discharge home. Multivariable regressions examined associations between TBI and outcomes, controlling for sociodemographic and injury severity variables. RESULTS: Of 3891 IPV/DV-related cases, 31.1% were IPV/DV-TBI. Cranial injuries included skull fracture (30.2%), subdural (19.8%), subarachnoid (13.4%), and epidural (1.1%) hemorrhage, contusion (8.1%), and cerebral edema (3.3%). In IPV/DV-TBI, mild/moderate/severe TBI proportions were 87.4%/4.3%/8.3%, with mean LOS 11.5 ± 10.9/14.4 ± 27.3/5.0 ± 7.7-days and mortality 0.9%/22.5%/28.6%, respectively. Compared with non-TBI, IPV/DV-TBI had more female (77.2%/64.6%, P < .001) and fewer Black patients (28.9%/36.6%, P < .001), more ICU admissions (20.9%/7.5%, P < .001) and mortality (4.1%/1.8%, P < .001), longer LOS (5.3 ± 9.5/4.5 ± 6.4-days, P = .008), and decreased discharge home (79.8%/83.8%, P = .005). Multivariable regressions confirmed the associations between TBI and ICU admission (adjusted odds ratio [aOR] = 4.29, 95% CI [3.46-5.33]), mortality (aOR = 3.20 [1.99-5.15]), LOS (adjusted mean difference = +1.22 [0.68-1.76]), and inability to discharge home (aOR = 0.57 [0.46-0.71]). CONCLUSION: One-third of US IPV/DV-related trauma cases have TBI, comprising predominantly female patients. Black patients with IPV/DV-related trauma were overrepresented compared with US census estimates. IPV/DV-TBI had increased ICU admissions, LOS, in-hospital mortality, and inability to discharge home compared with non-TBI. Investigating morbidity risk factors and providing sociomedical resources during acute care are critically needed in this vulnerable population.

2.
J Neurosurg Spine ; : 1-6, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669714

ABSTRACT

OBJECTIVE: Policy concern and debate surround the concept of overlapping spine surgery. Overlapping surgery specifically refers to nonessential portions of the case or noncutting time overlap. This differs from concurrent surgery, in which critical portions of the procedure overlap. Here the authors explore the barriers for safe and efficient overlapping surgery in academic spinal deformity practice. METHODS: Over a 24-month period, cases of spinal deformity, degenerative cases, anterior cervical discectomy and fusions (ACDFs), and laminectomy were reviewed for duration in operating room (OR) prior to surgery, duration of cutting time, duration in OR after surgery, turnover duration, and time delay from initial start time. Standard degenerative cases were referenced as 1-2 ACDFs as well as 1- to 2-level laminectomy surgery. The blocks of time between two consecutive cutting periods were investigated to determine the feasibility of overlapping an additional surgery. Specifically, the authors compared the blocks of time that include the postsurgery period, the turnover period, and the presurgery period to cutting periods. RESULTS: One hundred twenty-six complex spinal deformity procedures and 85 degenerative cases (including 49 ACDFs and 36 laminectomies) from one center and one neurosurgeon were reviewed. These procedures were performed between September 2019 and December 2021 with a 3-month gap in military deployment. On average, the procedure's duration for cases of deformity was 236.5 minutes, for cases of ACDFs it was 84 minutes, and for cases of laminectomies it was 105.5 minutes. The block of noncutting time while the patient was in the OR showed no difference from the surgical cut time. The turnover time between cases was 52.35 minutes. Of 100 cases scheduled as the first case of the day, 94 had a delay to the OR averaging 18.2 minutes. CONCLUSIONS: The data in this study indicate that estimates for pre- and postsurgical times alone are not sufficient to allow for overlapping surgery. The average cut-time duration of ACDF was 84 minutes; the average presurgical time for deformity was 68 minutes. This highlights the critical analysis for further examination of optimal scheduling, on-time first start, turnover periods, and the orchestration of all members of the providing team to optimize the cutting time for safe and consistent implementation of overlapping spine surgery.

3.
Clin Transl Med ; 14(4): e1650, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38649772

ABSTRACT

BACKGROUND: Although many molecules have been investigated as biomarkers for spinal cord injury (SCI) or ischemic stroke, none of them are specifically induced in central nervous system (CNS) neurons following injuries with low baseline expression. However, neuronal injury constitutes a major pathology associated with SCI or stroke and strongly correlates with neurological outcomes. Biomarkers characterized by low baseline expression and specific induction in neurons post-injury are likely to better correlate with injury severity and recovery, demonstrating higher sensitivity and specificity for CNS injuries compared to non-neuronal markers or pan-neuronal markers with constitutive expressions. METHODS: In animal studies, young adult wildtype and global Atf3 knockout mice underwent unilateral cervical 5 (C5) SCI or permanent distal middle cerebral artery occlusion (pMCAO). Gene expression was assessed using RNA-sequencing and qRT-PCR, while protein expression was detected through immunostaining. Serum ATF3 levels in animal models and clinical human samples were measured using commercially available enzyme-linked immune-sorbent assay (ELISA) kits. RESULTS: Activating transcription factor 3 (ATF3), a molecular marker for injured dorsal root ganglion sensory neurons in the peripheral nervous system, was not expressed in spinal cord or cortex of naïve mice but was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Additionally, ATF3 protein levels in mouse blood significantly increased 1 day after SCI or ischemic stroke. Importantly, ATF3 protein levels in human serum were elevated in clinical patients within 24 hours after SCI or ischemic stroke. Moreover, Atf3 knockout mice, compared to the wildtype mice, exhibited worse neurological outcomes and larger damage regions after SCI or ischemic stroke, indicating that ATF3 has a neuroprotective function. CONCLUSIONS: ATF3 is an easily measurable, neuron-specific biomarker for clinical SCI and ischemic stroke, with neuroprotective properties. HIGHLIGHTS: ATF3 was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Serum ATF3 protein levels are elevated in clinical patients within 24 hours after SCI or ischemic stroke. ATF3 exhibits neuroprotective properties, as evidenced by the worse neurological outcomes and larger damage regions observed in Atf3 knockout mice compared to wildtype mice following SCI or ischemic stroke.


Subject(s)
Activating Transcription Factor 3 , Biomarkers , Ischemic Stroke , Neurons , Spinal Cord Injuries , Animals , Female , Humans , Male , Mice , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Biomarkers/metabolism , Biomarkers/blood , Disease Models, Animal , Ischemic Stroke/metabolism , Ischemic Stroke/genetics , Ischemic Stroke/blood , Mice, Knockout , Neurons/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/complications
4.
J Neurosurg ; : 1-13, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489823

ABSTRACT

OBJECTIVE: The International Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) and Corticosteroid Randomization After Significant Head Injury (CRASH) prognostic models for mortality and outcome after traumatic brain injury (TBI) were developed using data from 1984 to 2004. This study examined IMPACT and CRASH model performances in a contemporary cohort of US patients. METHODS: The prospective 18-center Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study (enrollment years 2014-2018) enrolled subjects aged ≥ 17 years who presented to level I trauma centers and received head CT within 24 hours of TBI. Data were extracted from the subjects who met the model criteria (for IMPACT, Glasgow Coma Scale [GCS] score 3-12 with 6-month Glasgow Outcome Scale-Extended [GOSE] data [n = 441]; for CRASH, GCS score 3-14 with 2-week mortality data and 6-month GOSE data [n = 831]). Analyses were conducted in the overall cohort and stratified on the basis of TBI severity (severe/moderate/mild TBI defined as GCS score 3-8/9-12/13-14), age (17-64 years or ≥ 65 years), and the 5 top enrolling sites. Unfavorable outcome was defined as GOSE score 1-4. Original IMPACT and CRASH model coefficients were applied, and model performances were assessed by calibration (intercept [< 0 indicated overprediction; > 0 indicated underprediction] and slope) and discrimination (c-statistic). RESULTS: Overall, the IMPACT models overpredicted mortality (intercept -0.79 [95% CI -1.05 to -0.53], slope 1.37 [1.05-1.69]) and acceptably predicted unfavorable outcome (intercept 0.07 [-0.14 to 0.29], slope 1.19 [0.96-1.42]), with good discrimination (c-statistics 0.84 and 0.83, respectively). The CRASH models overpredicted mortality (intercept -1.06 [-1.36 to -0.75], slope 0.96 [0.79-1.14]) and unfavorable outcome (intercept -0.60 [-0.78 to -0.41], slope 1.20 [1.03-1.37]), with good discrimination (c-statistics 0.92 and 0.88, respectively). IMPACT overpredicted mortality and acceptably predicted unfavorable outcome in the severe and moderate TBI subgroups, with good discrimination (c-statistic ≥ 0.81). CRASH overpredicted mortality in the severe and moderate TBI subgroups and acceptably predicted mortality in the mild TBI subgroup, with good discrimination (c-statistic ≥ 0.86); unfavorable outcome was overpredicted in the severe and mild TBI subgroups with adequate discrimination (c-statistic ≥ 0.78), whereas calibration was nonlinear in the moderate TBI subgroup. In subjects ≥ 65 years of age, the models performed variably (IMPACT-mortality, intercept 0.28, slope 0.68, and c-statistic 0.68; CRASH-unfavorable outcome, intercept -0.97, slope 1.32, and c-statistic 0.88; nonlinear calibration for IMPACT-unfavorable outcome and CRASH-mortality). Model performance differences were observed across the top enrolling sites for mortality and unfavorable outcome. CONCLUSIONS: The IMPACT and CRASH models adequately discriminated mortality and unfavorable outcome. Observed overestimations of mortality and unfavorable outcome underscore the need to update prognostic models to incorporate contemporary changes in TBI management and case-mix. Investigations to elucidate the relationships between increased survival, outcome, treatment intensity, and site-specific practices will be relevant to improve models in specific TBI subpopulations (e.g., older adults), which may benefit from the inclusion of blood-based biomarkers, neuroimaging features, and treatment data.

5.
Neurosurgery ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38305406

ABSTRACT

BACKGROUND AND OBJECTIVES: Hospital length of stay (HLOS) is a metric of injury severity, resource utilization, and healthcare access. Recent evidence has shown an association between Medicaid insurance and increased HLOS after traumatic brain injury (TBI). This study aims to validate the association between Medicaid and prolonged HLOS after TBI using the National Trauma Data Bank. METHODS: National Trauma Data Bank Trauma Quality Programs Participant Use Files (2003-2021) were queried for adult patients with TBI using traumatic intracranial injury ICD-9/ICD-10 codes. Patients with complete HLOS, age, sex, race, insurance payor, Glasgow Coma Scale, Injury Severity Score, and discharge disposition data were included (N = 552 949). Analyses were stratified by TBI severity using Glasgow Coma Scale. HLOS was coded into Tiers according to percentiles within TBI severity categories (Tier 1: 1-74th; 2: 75-84th; 3: 85-94th; 4: 95-99th). Multivariable logistic regressions evaluated associations between insurance payor and prolonged (Tier 4) HLOS, controlling for sociodemographic, Injury Severity Score, cranial surgery, and discharge disposition variables. Adjusted odds ratios (aOR) and 95% CI were reported. RESULTS: HLOS Tiers consisted of 0-19, 20-27, 28-46, and ≥47 days (Tiers 1-4, respectively) in severe TBI (N = 103 081); 0-15, 16-21, 22-37, and ≥38 days in moderate TBI (N = 39 904); and 0-7, 8-10, 11-19, and ≥20 days in mild TBI (N = 409 964). Proportion of Medicaid patients increased with Tier ([Tier 1 vs Tier 4] severe: 16.0% vs 36.1%; moderate: 14.1% vs 31.6%; mild TBI: 10.2% vs 17.4%; all P < .001). On multivariable analyses, Medicaid was associated with prolonged HLOS (severe TBI: aOR = 2.35 [2.19-2.52]; moderate TBI: aOR = 2.30 [2.04-2.61]; mild TBI: aOR = 1.75 [1.67-1.83]; reference category: private/commercial). CONCLUSION: This study supports Medicaid as an independent predictor of prolonged HLOS across TBI severity strata. Reasons may include different efficacies in care delivery and reimbursement, which require further investigation. Our findings support the development of discharge coordination pathways and policies for Medicaid patients with TBI.

6.
Article in English | MEDLINE | ID: mdl-38295396

ABSTRACT

BACKGROUND AND OBJECTIVES: Intraoperative ultrasound (IOUS) during anterior cervical surgery is hindered by large transducer size and small operative corridor. We hypothesized that a linear (minimally invasive) transducer designed for transsphenoidal surgery can visualize the spinal cord, nerve roots, and surrounding structures during anterior cervical approaches, facilitating intraoperative assessment of central and foraminal decompression. METHODS: IOUS was used to evaluate 26 levels in 17 patients (15 anterior cervical discectomy and fusion, 1 corpectomy, 1 arthroplasty) with a linear probe (7 × 6-mm end-fire transducer, 150-mm length, 12-15 MHz). After pin-based distraction, discectomy, and posterior longitudinal ligament resection, IOUS assessed adequacy of cord decompression and, following proximal foraminotomy or uncinectomy, nerve root decompression. If indicated, additional decompression was completed. Criteria for adequate central and foraminal decompression were visualization of subarachnoid space around the cord and cerebrospinal fluid pulsatility along the root sleeve/absence of nerve root compression distal to the root sleeve, respectively. RESULTS: IOUS successfully visualized the cord, nerve roots, and surrounding structures in all 26 levels and influenced management in 11 levels (42.3%). IOUS indicated persistent cord and nerve root compression in 2 and 7 levels, respectively. Planned uncinectomy was aborted in 2 levels after IOUS demonstrated adequate nerve root decompression with intervertebral distraction/proximal foraminotomy alone. IOUS identified persistent nerve root compression after initial proximal foraminotomy in 4 levels and uncinectomy in 2 levels. An unplanned uncinectomy was performed in 1 level after IOUS showed persistent nerve root compression after multiple iterations of proximal foraminotomy. At follow-up (mean 3.1 months), the mean improvement in Numeric Rating Scale neck and arm pain, Neck Disability Index, and modified Japanese Orthopedic Association was 4.0%, 3.2%, 3.7%, and 0.7%, respectively. CONCLUSION: The neural elements and their relationships to surrounding bone/soft tissue can be visualized using a minimally invasive IOUS transducer during anterior cervical surgery without having to remove pin-based distraction. This allows surgeons to intraoperatively verify the extent of central and foraminal decompression.

7.
Neurosurgery ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38197638

ABSTRACT

BACKGROUND AND OBJECTIVES: Under the Merit-Based Incentive Payment System (MIPS), Medicare evaluates provider performance to determine payment adjustments. Studies examining the first year of MIPS (2017) showed that safety-net providers had lower MIPS scores, but the performance of safety-net physicians over time has not been studied. This study aimed to examine the performance of safety-net vs non-safety-net neurosurgeons in MIPS from 2017 to 2020. METHODS: Safety-net neurosurgeons were defined as being in the top quartile according to proportion of dual-eligible beneficiaries and non-safety-net in the bottom quartile. Outcomes were total MIPS scores and dual-eligible proportion over time. In this descriptive study, we evaluated ordinary least squares regression models with SEs clustered at the physician level. Covariates of interest included safety-net status, year, and average Hierarchical Condition Category risk score of beneficiaries. RESULTS: There were 2796-3322 physicians included each year between 2017 and 2020. Mean total MIPS scores were not significantly different for safety-net than non-safety-net physicians in 2017 but were greater for safety-net in 2018 (90.7 vs 84.5, P < .01), 2019 (86.4 vs 81.5, P < .01), and 2020 (90.9 vs 86.7, P < .01). Safety-net status (coefficient -9.11; 95% CI [-13.15, -5.07]; P < .01) and participation in MIPS as an individual (-9.89; [-12.66, -7.13]; P < .01) were associated with lower scores while year, the interaction between safety-net status and year, and participation in MIPS as a physician group or alternative payment model were associated with higher scores. Average Hierarchical Condition Category risk score of beneficiaries (-.011; [-.015, -.006]; P < .01) was associated with decreasing dual-eligible case mix, whereas average age of beneficiaries (.002; [.002, .003]; P < .01) was associated with increasing dual-eligible case mix. CONCLUSION: Being a safety-net physician was associated with lower MIPS scores, but safety-net neurosurgeons demonstrated greater improvement in MIPS scores than non-safety-net neurosurgeons over time. Providers with higher-risk patients were more likely to decrease their dual-eligible case mix over time.

8.
Neurosurg Focus ; 55(4): E17, 2023 10.
Article in English | MEDLINE | ID: mdl-37778033

ABSTRACT

OBJECTIVE: Venous thromboembolism (VTE) following traumatic spinal cord injury (SCI) is a significant clinical concern. This study sought to determine the incidence of VTE and hemorrhagic complications among patients with SCI who received low-molecular-weight heparin (LMWH) within 24 hours of injury or surgery and identify variables that predict VTE using the prospective Transforming Research and Clinical Knowledge in SCI (TRACK-SCI) database. METHODS: The TRACK-SCI database was queried for individuals with traumatic SCI from 2015 to 2022. Primary outcomes of interest included rates of VTE (including deep vein thrombosis [DVT] and pulmonary embolism [PE]) and in-hospital hemorrhagic complications that occurred after LWMH administration. Secondary outcomes included intensive care unit and hospital length of stay, discharge location type, and in-hospital mortality. RESULTS: The study cohort consisted of 162 patients with SCI. Fifteen of the 162 patients withdrew from the study, leading to loss of data for certain variables for these patients. One hundred thirty patients (87.8%) underwent decompression and/or fusion surgery for SCI. DVT occurred in 11 (7.4%) of 148 patients, PE in 9 (6.1%) of 148, and any VTE in 18 (12.2%) of 148 patients. The analysis showed that admission lower-extremity motor score (p = 0.0408), injury at the thoracic level (p = 0.0086), admission American Spinal Injury Association grade (p = 0.0070), and younger age (p = 0.0372) were significantly associated with VTE. There were 3 instances of postoperative spine surgery-related bleeding (2.4%) in the 127 patients who had spine surgery with bleeding complication data available, with one requiring return to surgery (0.8%). Thirteen (8.8%) of 147 patients had a bleeding complication not related to spine surgery. There were 2 gastrointestinal bleeds associated with nasogastric tube placement, 3 cases of postoperative non-spine-related surgery bleeding, and 8 cases of other bleeding complications (5.4%) not related to any surgery. CONCLUSIONS: Initiation of LMWH within 24 hours was associated with a low rate of spine surgery-related bleeding. Bleeding complications unrelated to SCI surgery still occur with LMWH administration. Because neurosurgical intervention is typically the limiting factor in initializing chemical DVT prophylaxis, many of these bleeding complications would have likely occurred regardless of the protocol.


Subject(s)
Pulmonary Embolism , Spinal Cord Injuries , Spinal Injuries , Venous Thromboembolism , Humans , Heparin, Low-Molecular-Weight/adverse effects , Venous Thromboembolism/drug therapy , Venous Thromboembolism/prevention & control , Venous Thromboembolism/epidemiology , Prospective Studies , Anticoagulants/adverse effects , Spinal Cord Injuries/complications , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/surgery , Pulmonary Embolism/drug therapy , Pulmonary Embolism/epidemiology , Pulmonary Embolism/prevention & control , Postoperative Hemorrhage/epidemiology , Registries , Heparin
9.
JAMA Netw Open ; 6(9): e2335804, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37751204

ABSTRACT

Importance: One traumatic brain injury (TBI) increases the risk of subsequent TBIs. Research on longitudinal outcomes of civilian repetitive TBIs is limited. Objective: To investigate associations between sustaining 1 or more TBIs (ie, postindex TBIs) after study enrollment (ie, index TBIs) and multidimensional outcomes at 1 year and 3 to 7 years. Design, Setting, and Participants: This cohort study included participants presenting to emergency departments enrolled within 24 hours of TBI in the prospective, 18-center Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study (enrollment years, February 2014 to July 2020). Participants who completed outcome assessments at 1 year and 3 to 7 years were included. Data were analyzed from September 2022 to August 2023. Exposures: Postindex TBI(s). Main Outcomes and Measures: Demographic and clinical factors, prior TBI (ie, preindex TBI), and functional (Glasgow Outcome Scale-Extended [GOSE]), postconcussive (Rivermead Post-Concussion Symptoms Questionnaire [RPQ]), psychological distress (Brief Symptom Inventory-18 [BSI-18]), depressive (Patient Health Questionnaire-9 [PHQ-9]), posttraumatic stress disorder (PTSD; PTSD Checklist for DSM-5 [PCL-5]), and health-related quality-of-life (Quality of Life After Brain Injury-Overall Scale [QOLIBRI-OS]) outcomes were assessed. Adjusted mean differences (aMDs) and adjusted relative risks are reported with 95% CIs. Results: Of 2417 TRACK-TBI participants, 1572 completed the outcomes assessment at 1 year (1049 [66.7%] male; mean [SD] age, 41.6 [17.5] years) and 1084 completed the outcomes assessment at 3 to 7 years (714 [65.9%] male; mean [SD] age, 40.6 [17.0] years). At 1 year, a total of 60 participants (4%) were Asian, 255 (16%) were Black, 1213 (77%) were White, 39 (2%) were another race, and 5 (0.3%) had unknown race. At 3 to 7 years, 39 (4%) were Asian, 149 (14%) were Black, 868 (80%) were White, 26 (2%) had another race, and 2 (0.2%) had unknown race. A total of 50 (3.2%) and 132 (12.2%) reported 1 or more postindex TBIs at 1 year and 3 to 7 years, respectively. Risk factors for postindex TBI were psychiatric history, preindex TBI, and extracranial injury severity. At 1 year, compared with those without postindex TBI, participants with postindex TBI had worse functional recovery (GOSE score of 8: adjusted relative risk, 0.57; 95% CI, 0.34-0.96) and health-related quality of life (QOLIBRI-OS: aMD, -15.9; 95% CI, -22.6 to -9.1), and greater postconcussive symptoms (RPQ: aMD, 8.1; 95% CI, 4.2-11.9), psychological distress symptoms (BSI-18: aMD, 5.3; 95% CI, 2.1-8.6), depression symptoms (PHQ-9: aMD, 3.0; 95% CI, 1.5-4.4), and PTSD symptoms (PCL-5: aMD, 7.8; 95% CI, 3.2-12.4). At 3 to 7 years, these associations remained statistically significant. Multiple (2 or more) postindex TBIs were associated with poorer outcomes across all domains. Conclusions and Relevance: In this cohort study of patients with acute TBI, postindex TBI was associated with worse symptomatology across outcome domains at 1 year and 3 to 7 years postinjury, and there was a dose-dependent response with multiple postindex TBIs. These results underscore the critical need to provide TBI prevention, education, counseling, and follow-up care to at-risk patients.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Humans , Male , Adult , Female , Cohort Studies , Prospective Studies , Quality of Life , Brain Injuries, Traumatic/epidemiology
10.
Neurosurg Clin N Am ; 34(4): 619-632, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37718108

ABSTRACT

Lumbar interbody fusion (LIF) is a well-established approach in treating spinal deformity and degenerative conditions of the spine. Since its inception in the 20th century, LIF has continued to evolve, allowing for minimally invasive approaches, high fusion rates, and improving disability scores with favorable complication rates. The anterior to the psoas (ATP) approach utilizes a retroperitoneal pathway medial to the psoas muscle to access the L1-S1intervertebral disc spaces. In contrast to the transpsoas arppoach, its primary advantage is avoiding transgressing the psoas muscle and the contained lumbar plexus, which potentially decreases the risk of injury to the lumbar plexus. Avoiding transgression of the psoas may minimize the risk of transient or permanent neurological deficits secondary to lumbar plexus injury. Indications for ATP approaches may expand as it is shown to be a safe and effective method of achieving spinal arthrodesis.


Subject(s)
Lumbar Vertebrae , Spinal Fusion , Humans , Lumbar Vertebrae/surgery , Lumbosacral Region , Adenosine Triphosphate
11.
JAMA ; 330(12): 1135-1136, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37656453

ABSTRACT

This Viewpoint explores a critical source of administrative burden and physician frustration­the explosive growth of health care quality metrics­and how improving these metrics could combat clinician burnout.


Subject(s)
Burnout, Professional , Physicians , Quality Indicators, Health Care , Quality of Health Care , Humans , Burnout, Professional/prevention & control , Burnout, Psychological/prevention & control , Physicians/psychology
12.
Injury ; 54(9): 110815, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37268533

ABSTRACT

BACKGROUND: Hospital length of stay (HLOS) after traumatic brain injury (TBI) is a metric of injury severity, resource utilization, and access to services. This study aimed to evaluate socioeconomic and clinical factors associated with prolonged HLOS after TBI. METHODS: Retrospective data from adult hospitalized patients diagnosed with acute TBI at a US Level 1 trauma center between August 1, 2019 - April 1, 2022 were extracted from the electronic health record. HLOS was stratified by Tier (1: 1-74th percentile; 2: 75-84th; 3: 85-94th; 4: 95-99th). Demographic, socioeconomic, injury severity, and level-of-care factors were compared by HLOS. Multivariable logistic regressions evaluated associations between socioeconomic and clinical variables and prolonged HLOS, using multivariable odds ratios (mOR) and [95% confidence intervals]. Estimated daily charges were calculated for a subset of medically-stable inpatients awaiting placement. Statistical significance was assessed at p < 0.05. RESULTS: In 1443 patients, median HLOS was 4 days (interquartile range 2-8; range 0-145). HLOS Tiers were 0-7, 8-13, 14-27, and ≥28 days (Tiers 1-4, respectively). Patients with Tier 4 HLOS differed significantly from others, with increased Medicaid insurance (53.4% vs. 30.3-33.1%, p = 0.003), severe TBI (Glasgow Coma Scale 3-8: 38.4% vs. 8.7-18.2%, p < 0.001), younger age (mean 52.3-years vs. 61.1-63.7-years, p = 0.003), low socioeconomic status (53.4% vs. 32.0-33.9%, p = 0.003), and need for post-acute care (60.3% vs. 11.2-39.7%, p < 0.001). Independent factors associated with prolonged (Tier 4) HLOS were Medicaid (mOR = 1.99 [1.08-3.68], vs. Medicare/commercial), moderate and severe TBI (mOR = 3.48 [1.61-7.56]; mOR = 4.43 [2.18-8.99], respectively, vs. mild TBI), and need for post-acute placement (mOR = 10.68 [5.74-19.89], while age was protective (per-year mOR = 0.98 [0.97-0.99]). Estimated daily charges for a medically-stable inpatient was $17126. CONCLUSIONS: Medicaid insurance, moderate/severe TBI, and need for post-acute care were independently associated with prolonged HLOS ≥28 days. Medically-stable inpatients awaiting placement accrue immense daily healthcare costs. At-risk patients should be identified early, receive care transitions resources, and be prioritized for discharge coordination pathways.


Subject(s)
Brain Injuries, Traumatic , Medicare , Adult , Humans , Aged , United States/epidemiology , Middle Aged , Length of Stay , Retrospective Studies , Brain Injuries, Traumatic/therapy , Glasgow Coma Scale , Hospitals , Socioeconomic Factors
15.
J Clin Med ; 12(5)2023 03 03.
Article in English | MEDLINE | ID: mdl-36902811

ABSTRACT

INTRODUCTION: Neuroworsening may be a sign of progressive brain injury and is a factor for treatment of traumatic brain injury (TBI) in intensive care settings. The implications of neuroworsening for clinical management and long-term sequelae of TBI in the emergency department (ED) require characterization. METHODS: Adult TBI subjects from the prospective Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot Study with ED admission and disposition Glasgow Coma Scale (GCS) scores were extracted. All patients received head computed tomography (CT) scan <24 h post-injury. Neuroworsening was defined as a decline in motor GCS at ED disposition (vs. ED admission). Clinical and CT characteristics, neurosurgical intervention, in-hospital mortality, and 3- and 6-month Glasgow Outcome Scale-Extended (GOS-E) scores were compared by neuroworsening status. Multivariable regressions were performed for neurosurgical intervention and unfavorable outcome (GOS-E ≤ 3). Multivariable odds ratios (mOR) with [95% confidence intervals] were reported. RESULTS: In 481 subjects, 91.1% had ED admission GCS 13-15 and 3.3% had neuroworsening. All neuroworsening subjects were admitted to intensive care unit (vs. non-neuroworsening: 26.2%) and were CT-positive for structural injury (vs. 45.4%). Neuroworsening was associated with subdural (75.0%/22.2%), subarachnoid (81.3%/31.2%), and intraventricular hemorrhage (18.8%/2.2%), contusion (68.8%/20.4%), midline shift (50.0%/2.6%), cisternal compression (56.3%/5.6%), and cerebral edema (68.8%/12.3%; all p < 0.001). Neuroworsening subjects had higher likelihoods of cranial surgery (56.3%/3.5%), intracranial pressure (ICP) monitoring (62.5%/2.6%), in-hospital mortality (37.5%/0.6%), and unfavorable 3- and 6-month outcome (58.3%/4.9%; 53.8%/6.2%; all p < 0.001). On multivariable analysis, neuroworsening predicted surgery (mOR = 4.65 [1.02-21.19]), ICP monitoring (mOR = 15.48 [2.92-81.85], and unfavorable 3- and 6-month outcome (mOR = 5.36 [1.13-25.36]; mOR = 5.68 [1.18-27.35]). CONCLUSIONS: Neuroworsening in the ED is an early indicator of TBI severity, and a predictor of neurosurgical intervention and unfavorable outcome. Clinicians must be vigilant in detecting neuroworsening, as affected patients are at increased risk for poor outcomes and may benefit from immediate therapeutic interventions.

16.
Neurosurgery ; 92(4): 870-875, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36729755

ABSTRACT

BACKGROUND: The electronic health record (EHR) is central to clinical workflow, yet few studies to date have explored EHR usage patterns among neurosurgery trainees. OBJECTIVE: To describe the amount of EHR time spent by postgraduate year (PGY)-2 and PGY-3 neurosurgery residents during on-call days and the distribution of EHR activities in which they engage. METHODS: This cohort study used the EHR audit logs, time-stamped records of user activities, to review EHR usage of PGY-2 and PGY-3 neurosurgery residents scheduled for 1 or more on-call days across 2 calendar years at the University of California San Francisco. We focused on the PGY-2 and PGY-3, which, in our training program, represent the primary participants in the in-house on-call pool. RESULTS: Over 723 call days, 12 different residents took at least one on-call shift. The median (IQR) number of minutes that residents spent per on-call shift actively using the EHR was 536.8 (203.5), while interacting with an average (SD) of 68.1 (14.7) patient charts. There was no significant difference between Active EHR Time between residents as PGY-2 and PGY-3 on paired t -tests. Residents spent the most time on the following EHR activities: patient reports, notes, order management, patient list, and chart review. CONCLUSION: Residents spent, on average, 9 hours of their on-call shift actively using the EHR, and there was no improved efficiency as residents gained experience. We noted several areas of administrative EHR burden, which could be reduced.


Subject(s)
Internship and Residency , Neurosurgery , Humans , Cohort Studies , Electronic Health Records , Neurosurgical Procedures
17.
World Neurosurg ; 172: 20-33, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36646418

ABSTRACT

OBJECTIVE: Virtual mentorship and research programs are becoming increasingly popular to facilitate education and career development for students and residents. We review virtual research initiatives for early trainees in neurosurgery and describe our effort to expand access to resources and shared objective mentorship (SOM) via the novel Neurosurgery Education and Research Virtual Group (NERVE). METHODS: A systematic review of neurosurgical programming delivered via a virtual platform was conducted using PubMed, Embase, and Scopus databases. Identified articles were screened. Those meeting prespecified inclusion criteria were reviewed in full and examined for relevant data. Data analysis was performed using Microsoft Excel, and means and standard deviations were calculated. Descriptive analysis of NERVE characteristics was also performed. RESULTS: Of the 2438 identified articles, 10 were included. The most common (70%) implementation style was a webinar-based lecture series. The least common (10%) was a longitudinal curricular interest group. Of the total NERVE cohort, 90% were first generation medical students and 82% attended institutions without home programs. Survey results indicated 73.8% had contributed to at least 2 research projects throughout the year. CONCLUSIONS: There is a scarcity of virtual neurosurgical resources which facilitate SOM opportunities for trainees. In our systematic review, NERVE is the only multi-institutional virtual initiative aimed at increasing access to neurosurgical education and research opportunities for the purpose of SOM among early trainees from disadvantaged backgrounds. This highlights the group's niche and potential impact on increasing diversity in neurosurgery, improving trainees' career development, and facilitating future resident research productivity.


Subject(s)
Education, Medical , Neurosurgery , Students, Medical , Humans , Neurosurgery/education , Mentors , Neurosurgical Procedures
20.
World Neurosurg ; 167: e998-e1005, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36058487

ABSTRACT

BACKGROUND: Hospital length of stay (HLOS) after traumatic brain injury (TBI) is an important metric of injury severity, resource utilization, and access to post-acute care services. Risk factors for protracted HLOS after TBI require further characterization. METHODS: Data regarding adult inpatients admitted to a single U.S. level 1 trauma center with a diagnosis of acute TBI between August 1, 2019, and April 1, 2022, were extracted from the electronic health record. Patients with extreme HLOS (XHLOS, >99th percentile of institutional TBI HLOS) were compared with those without XHLOS. Socioeconomic status (SES), clinical/injury factors, and discharge disposition were analyzed. RESULTS: In 1638 patients, the median HLOS was 3 days (interquartile range [IQR]: 2-8 days). XHLOS threshold was >70 days (N = 18; range: 72-146 days). XHLOS was associated with younger age (XHLOS/non-XHLOS: 50.4/59.6 years; P = 0.042) and greater proportions with severe TBI (55.6%/11.4%; P < 0.001), low SES (72.2%/31.4%; P < 0.001), and Medicaid insurance (77.8%/30.1%; P < 0.001). XHLOS patients were more likely to die in hospital (22.2%/8.1%) and discharge to post-acute facility (77.8%/16.3%; P < 0.001). No XHLOS patients were discharged to home. In XHLOS patients alive at discharge, medical stability was documented at median 39 days (IQR: 28-58 days) and were hospitalized for another 56 days (IQR: 26.5-78.5 days). CONCLUSIONS: XHLOS patients were more likely to have severe injuries, low SES, and Medicaid. XHLOS is associated with in-hospital mortality and need for post-acute placement. XHLOS patients often demonstrated medical stability long before placement, underscoring complex relationships between SES, health insurance, and outcome. These findings have important implications for quality improvement and resource utilization at acute care hospitals and await validation from larger trials.


Subject(s)
Brain Injuries, Traumatic , Adult , United States/epidemiology , Humans , Middle Aged , Length of Stay , Retrospective Studies , Brain Injuries, Traumatic/epidemiology , Brain Injuries, Traumatic/therapy , Hospitalization , Hospitals
SELECTION OF CITATIONS
SEARCH DETAIL
...