Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
bioRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38645212

ABSTRACT

Problematic opioid use that emerges in a subset of individuals may be due to pre-existing disruptions in the biobehavioral mechanisms that regulate drug use. The identity of these mechanisms is not known, but emerging evidence suggests that suboptimal decision-making that is observable prior to drug use may contribute to the pathology of addiction and, notably, serve as a powerful phenotype for interrogating biologically based differences in opiate-taking behaviors. The current study investigated the relationship between decision-making phenotypes and opioid-taking behaviors in male and female Long Evans rats. Adaptive decision-making processes were assessed using a probabilistic reversal-learning task and oxycodone- (or vehicle, as a control) taking behaviors assessed for 32 days using a saccharin fading procedure that promoted dynamic intake of oxycodone. Tests of motivation, extinction, and reinstatement were also performed. Computational analyses of decision-making and opioid-taking behaviors revealed that attenuated reward-guided decision-making was associated with greater self-administration of oxycodone and addiction-relevant behaviors. Moreover, pre-existing impairments in reward-guided decision-making observed in female rats was associated with greater oxycodone use and addiction-relevant behaviors when compared to males. These results provide new insights into the biobehavioral mechanisms that regulate opiate-taking behaviors and offer a novel phenotypic approach for interrogating sex differences in addiction susceptibility and opioid use disorders.

2.
Transl Psychiatry ; 14(1): 90, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38346984

ABSTRACT

Recent studies have implicated the endogenous opioid system in the antidepressant actions of ketamine, but the underlying mechanisms remain unclear. We used a combination of pharmacological, behavioral, and molecular approaches in rats to test the contribution of the prefrontal endogenous opioid system to the antidepressant-like effects of a single dose of ketamine. Both the behavioral actions of ketamine and their molecular correlates in the medial prefrontal cortex (mPFC) are blocked by acute systemic administration of naltrexone, a competitive opioid receptor antagonist. Naltrexone delivered directly into the mPFC similarly disrupts the behavioral effects of ketamine. Ketamine treatment rapidly increases levels of ß-endorphin and the expression of the µ-opioid receptor gene (Oprm1) in the mPFC, and the expression of gene that encodes proopiomelanocortin, the precursor of ß-endorphin, in the hypothalamus, in vivo. Finally, neutralization of ß-endorphin in the mPFC using a specific antibody prior to ketamine treatment abolishes both behavioral and molecular effects. Together, these findings indicate that presence of ß-endorphin and activation of opioid receptors in the mPFC are required for the antidepressant-like actions of ketamine.


Subject(s)
Ketamine , Rats , Animals , Analgesics, Opioid/pharmacology , beta-Endorphin/metabolism , beta-Endorphin/pharmacology , Naltrexone/pharmacology , Naltrexone/metabolism , Antidepressive Agents , Prefrontal Cortex/metabolism
3.
Nat Metab ; 5(6): 1059-1072, 2023 06.
Article in English | MEDLINE | ID: mdl-37308722

ABSTRACT

Post-ingestive nutrient signals to the brain regulate eating behaviour in rodents, and impaired responses to these signals have been associated with pathological feeding behaviour and obesity. To study this in humans, we performed a single-blinded, randomized, controlled, crossover study in 30 humans with a healthy body weight (females N = 12, males N = 18) and 30 humans with obesity (females N = 18, males N = 12). We assessed the effect of intragastric glucose, lipid and water (noncaloric isovolumetric control) infusions on the primary endpoints cerebral neuronal activity and striatal dopamine release, as well as on the secondary endpoints plasma hormones and glucose, hunger scores and caloric intake. To study whether impaired responses in participants with obesity would be partially reversible with diet-induced weight loss, imaging was repeated after 10% diet-induced weight loss. We show that intragastric glucose and lipid infusions induce orosensory-independent and preference-independent, nutrient-specific cerebral neuronal activity and striatal dopamine release in lean participants. In contrast, participants with obesity have severely impaired brain responses to post-ingestive nutrients. Importantly, the impaired neuronal responses are not restored after diet-induced weight loss. Impaired neuronal responses to nutritional signals may contribute to overeating and obesity, and ongoing resistance to post-ingestive nutrient signals after significant weight loss may in part explain the high rate of weight regain after successful weight loss.


Subject(s)
Dopamine , Obesity , Male , Female , Humans , Cross-Over Studies , Weight Loss , Brain , Nutrients , Glucose , Lipids
4.
Neuropsychopharmacology ; 48(3): 489-497, 2023 02.
Article in English | MEDLINE | ID: mdl-36100654

ABSTRACT

Clinical investigations suggest involvement of the metabotropic glutamate receptor 5 (mGluR5) in the pathophysiology of fear learning that underlies trauma-related disorders. Here, we utilized a 4-day fear learning paradigm combined with positron emission tomography (PET) to examine the relationship between mGluR5 availability and differences in the response of rats to repeated footshock exposure (FE). Specifically, on day 1, male (n = 16) and female (n = 12) rats received 15 footshocks and were compared with control rats who did not receive footshocks (n = 7 male; n = 4 female). FE rats were classified as low responders (LR) or high responders (HR) based on freezing to the context the following day (day 2). PET with [18F]FPEB was used to calculate regional mGluR5 binding potential (BPND) at two timepoints: prior to FE (i.e., baseline), and post-behavioral testing. Additionally, we used an unbiased proteomics approach to assess group and sex differences in prefrontal cortex (PFC) protein expression. Post-behavioral testing we observed decreased BPND in LR females, but increased BPND in HR males relative to baseline. Further, individuals displaying the greatest freezing during the FE context memory test had the largest increases in PFC BPND. Males and females displayed unique post-test molecular profiles: in males, the greatest differences were between FE and CON, including upregulation of mGluR5 and related molecular networks in FE, whereas the greatest differences among females were between the LR and HR groups. These findings suggest greater mGluR5 availability increases following footshock exposure may be related to greater contextual fear memory. Results additionally reveal sex differences in the molecular response to footshock, including differential involvement of mGluR5-related molecular networks.


Subject(s)
Receptor, Metabotropic Glutamate 5 , Animals , Female , Male , Rats , Positron-Emission Tomography/methods , Receptor, Metabotropic Glutamate 5/metabolism , Sex Factors
5.
Mol Psychiatry ; 27(5): 2580-2589, 2022 05.
Article in English | MEDLINE | ID: mdl-35418600

ABSTRACT

N-methyl-D-aspartate receptor (NMDAR) modulators have recently received increased attention as potential therapeutics for posttraumatic stress disorder (PTSD). Here, we tested a novel NMDAR-positive modulator, NYX-783, in the following two rodent models of PTSD: an auditory fear-conditioning model and a single-prolonged stress (SPS) model. We examined the ability of NYX-783 to reduce subsequent fear-based behaviors by measuring enhanced fear extinction and reduced spontaneous recovery (spontaneous return of fear) in male mice. NYX-783 administration significantly reduced spontaneous recovery in both PTSD models and enhanced fear extinction in the SPS model. Furthermore, NYX-783 increased the NMDA-induced inward currents of excitatory and inhibitory neurons in the infralimbic medial prefrontal cortex (IL mPFC) and that the GluN2B subunit of NMDARs on pyramidal neurons in the IL mPFC is required for its effect on spontaneous recovery. The downstream expression of brain-derived neurotrophic factor was required for NYX-783 to achieve its behavioral effect. These results elucidate the cellular targets of NYX-783 and the molecular mechanisms underlying the inhibition of spontaneous recovery. These preclinical findings support the hypothesis that NYX-783 may have therapeutic potential for PTSD treatment and may be particularly useful for inhibiting spontaneous recovery.


Subject(s)
Fear , Receptors, N-Methyl-D-Aspartate , Animals , Extinction, Psychological/physiology , Fear/physiology , Male , Mice , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism
6.
Biol Psychiatry ; 91(9): 841-852, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35279280

ABSTRACT

BACKGROUND: Stress produces differential behavioral responses through select molecular modifications to specific neurocircuitry elements. The orexin (Orx) system targets key components of this neurocircuitry in the basolateral amygdala (BLA). METHODS: We assessed the contribution of intra-BLA Orx1 receptors (Orx1Rs) in the expression of stress-induced phenotypes of mice. Using the Stress Alternatives Model, a social stress paradigm that produces two behavioral phenotypes, we characterized the role of intra-BLA Orx1R using acute pharmacological inhibition (SB-674042) and genetic knockdown (AAV-U6-Orx1R-shRNA) strategies. RESULTS: In the BLA, we observed that Orx1R (Hcrtr1) messenger RNA is predominantly expressed in CamKIIα+ glutamatergic neurons and rarely in GABAergic (gamma-aminobutyric acidergic) cells. While there is a slight overlap in Hcrtr1 and Orx2 receptor (Hcrtr2) messenger RNA expression in the BLA, we find that these receptors are most often expressed in separate cells. Antagonism of intra-BLA Orx1R after phenotype formation shifted behavioral expression from stress-sensitive (Stay) to stress-resilient (Escape) responses, an effect that was mimicked by genetic knockdown. Acute inhibition of Orx1R in the BLA also reduced contextual and cued fear freezing responses in Stay animals. This phenotype-specific behavioral change was accompanied by biased molecular transcription favoring Hcrtr2 over Hcrtr1 and Mapk3 over Plcb1 cell signaling cascades and enhanced Bdnf messenger RNA. CONCLUSIONS: Functional reorganization of intra-BLA gene expression is produced by antagonism of Orx1R, which promotes elevated Hcrtr2, greater Mapk3, and increased Bdnf expression. Together, these results provide evidence for a receptor-driven mechanism that balances pro- and antistress responses within the BLA.


Subject(s)
Basolateral Nuclear Complex , Orexin Receptors , Animals , Anxiety/metabolism , Basolateral Nuclear Complex/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Mice , Orexin Receptors/genetics , RNA, Messenger/metabolism , Signal Transduction
7.
Metabolism ; 123: 154839, 2021 10.
Article in English | MEDLINE | ID: mdl-34331964

ABSTRACT

BACKGROUND AND AIMS: Serotonergic and dopaminergic systems in the brain are essential for homeostatic and reward-associated regulation of food intake and systemic energy metabolism. It is largely unknown how fasting influences these systems or if such effects are altered in humans with obesity. We therefore aimed to evaluate the effects of fasting on hypothalamic/thalamic serotonin transporter (SERT) and striatal dopamine transporter (DAT) availability in lean subjects and subjects with obesity. METHODS: In this randomized controlled cross-over trial, we assessed the effects of 12 vs 24 h of fasting on SERT and DAT availability in the hypothalamus/thalamus and striatum, respectively, using SPECT imaging in 10 lean men and 10 men with obesity. RESULTS: As compared with the 12-h fast, a 24-h fast increased hypothalamic SERT availability in lean men, but not in men with obesity. We observed high inter-individual variation in the effects of fasting on thalamic SERT and striatal DAT, with no differences between lean men and those with obesity. In all subjects, fasting-induced increases in circulating free fatty acid (FFA) concentrations were associated with an increase in hypothalamic SERT availability and a decrease in striatal DAT availability. Multiple regression analysis showed that changes in plasma insulin and FFAs together accounted for 44% of the observed variation in striatal DAT availability. CONCLUSION: Lean men respond to prolonged fasting by increasing hypothalamic SERT availability, whereas this response is absent in men with obesity. Inter-individual differences in the adaptations of the cerebral serotonergic and dopaminergic systems to fasting may, in part, be explained by changes in peripheral metabolic signals of fasting, including FFAs and insulin.


Subject(s)
Fasting , Hypothalamus/physiopathology , Obesity/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Aged , Case-Control Studies , Corpus Striatum/diagnostic imaging , Corpus Striatum/metabolism , Cross-Over Studies , Dopamine Plasma Membrane Transport Proteins/metabolism , Fatty Acids, Nonesterified/metabolism , Humans , Hypothalamus/diagnostic imaging , Hypothalamus/metabolism , Insulin/metabolism , Male , Middle Aged , Tomography, Emission-Computed, Single-Photon
9.
J Neurosci ; 40(24): 4727-4738, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32354856

ABSTRACT

Decades of research have shown that the NAc is a critical region influencing addiction, mood, and food consumption through its effects on reinforcement learning, motivation, and hedonic experience. Pharmacological studies have demonstrated that inhibition of the NAc shell induces voracious feeding, leading to the hypothesis that the inhibitory projections that emerge from the NAc normally act to restrict feeding. While much of this work has focused on projections to the lateral hypothalamus, the role of NAc projections to the VTA in the control food intake has been largely unexplored. Using a retrograde viral labeling technique and real-time monitoring of neural activity with fiber photometry, we find that medial NAc shell projections to the VTA (mNAc→VTA) are inhibited during food-seeking and food consumption in male mice. We also demonstrate that this circuit bidirectionally controls feeding: optogenetic activation of NAc projections to the VTA inhibits food-seeking and food intake (in both sexes), while optogenetic inhibition of this circuit potentiates food-seeking behavior. Additionally, we show that activity of the NAc to VTA pathway is necessary for adaptive inhibition of food intake in response to external cues. These data provide new insight into NAc control over feeding in mice, and contribute to an emerging literature elucidating the role of inhibitory midbrain feedback within the mesolimbic circuit.SIGNIFICANCE STATEMENT The medial NAc has long been known to control consummatory behavior, with particular focus on accumbens projections to the lateral hypothalamus. Conversely, NAc projections to the VTA have mainly been studied in the context of drug reward. We show that NAc projections to the VTA bidirectionally control food intake, consistent with a permissive role in feeding. Additionally, we show that this circuit is normally inactivated during consumption and food-seeking. Together, these findings elucidate how mesolimbic circuits control food consumption.


Subject(s)
Consummatory Behavior/physiology , Eating/physiology , Nucleus Accumbens/physiology , Ventral Tegmental Area/physiology , Animals , Conditioning, Operant/physiology , Male , Mice , Motor Activity/physiology , Neural Pathways/physiology , Optogenetics , Reward
10.
Nat Neurosci ; 23(5): 638-650, 2020 05.
Article in English | MEDLINE | ID: mdl-32284606

ABSTRACT

Heightened aggression is characteristic of multiple neuropsychiatric disorders and can have various negative effects on patients, their families and the public. Recent studies in humans and animals have implicated brain reward circuits in aggression and suggest that, in subsets of aggressive individuals, domination of subordinate social targets is reinforcing. In this study, we showed that, in male mice, orexin neurons in the lateral hypothalamus activated a small population of glutamic acid decarboxylase 2 (GAD2)-expressing neurons in the lateral habenula (LHb) via orexin receptor 2 (OxR2) and that activation of these GAD2 neurons promoted male-male aggression and conditioned place preference for aggression-paired contexts. Moreover, LHb GAD2 neurons were inhibitory within the LHb and dampened the activity of the LHb as a whole. These results suggest that the orexin system is important for the regulation of inter-male aggressive behavior and provide the first functional evidence of a local inhibitory circuit within the LHb.


Subject(s)
Aggression/physiology , GABAergic Neurons/metabolism , Habenula/metabolism , Orexins/metabolism , Animals , Male , Mice , Signal Transduction/physiology
11.
Neuropharmacology ; 166: 107947, 2020 04.
Article in English | MEDLINE | ID: mdl-31926944

ABSTRACT

Ketamine, an NMDA receptor antagonist and fast acting antidepressant, produces a rapid burst of glutamate in the ventral medial prefrontal cortex (mPFC). Preclinical studies have demonstrated that pyramidal cell activity in the vmPFC is necessary for the rapid antidepressant response to ketamine in rodents. We sought to characterize the effects of ketamine and its stereoisomers (R and S), as well as a metabolite, (2R,6R)-hydroxynorketamine (HNK), on vmPFC activity using a genetically encoded calcium indicator (GCaMP6f). Ratiometric fiber photometry was utilized to monitor GCaMP6f fluorescence in pyramidal cells of mouse vmPFC prior to and immediately following administration of compounds. GCaMP6f signal was assessed to determine correspondance of activity between compounds. We observed dose dependent effects with (R,S)-ketamine (3-100 mg/kg), with the greatest effects on GCaMP6f activity at 30 mg/kg and lasting up to 20 min. (S)-ketamine (15 mg/kg), which has high affinity for the NMDA receptor channel produced similar effects to (R,S)-ketamine, but compounds with low NMDA receptor affinity, including (R)-ketamine (15 mg/kg) and (2R,6R)-HNK (30 mg/kg) had little or no effect on GCaMP6f activity. The initial response to administration of (R,S)-ketamine as well as (S)-ketamine is characterized by a brief period of robust GCaMP6f activation, consistent with increased activity of vmPFC pyramidal neurons. Because (2R,6R)-HNK and (R)-ketamine are reported to have antidepressant activity in rodent models the current results indicate that different initiating mechanisms lead to similar brain adaptive consequences that underlie the rapid antidepressant responses.


Subject(s)
Excitatory Amino Acid Antagonists/pharmacology , Ketamine/analogs & derivatives , Ketamine/pharmacology , Prefrontal Cortex/metabolism , Animals , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/chemistry , Excitatory Amino Acid Antagonists/metabolism , Ketamine/chemistry , Ketamine/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Photometry/methods , Prefrontal Cortex/drug effects , Stereoisomerism
12.
Neuron ; 103(4): 734-746.e3, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31253468

ABSTRACT

Adaptive decision making in dynamic environments requires multiple reinforcement-learning steps that may be implemented by dissociable neural circuits. Here, we used a novel directionally specific viral ablation approach to investigate the function of several anatomically defined orbitofrontal cortex (OFC) circuits during adaptive, flexible decision making in rats trained on a probabilistic reversal learning task. Ablation of OFC neurons projecting to the nucleus accumbens selectively disrupted performance following a reversal, by disrupting the use of negative outcomes to guide subsequent choices. Ablation of amygdala neurons projecting to the OFC also impaired reversal performance, but due to disruptions in the use of positive outcomes to guide subsequent choices. Ablation of OFC neurons projecting to the amygdala, by contrast, enhanced reversal performance by destabilizing action values. Our data are inconsistent with a unitary function of the OFC in decision making. Rather, distinct OFC-amygdala-striatal circuits mediate distinct components of the action-value updating and maintenance necessary for decision making.


Subject(s)
Prefrontal Cortex/physiology , Reinforcement, Psychology , Reversal Learning/physiology , Amygdala/physiology , Animals , Choice Behavior/physiology , Diphtheria Toxin/pharmacology , Feedback, Physiological , Male , Models, Neurological , Neurons/drug effects , Neurons/physiology , Nucleus Accumbens/physiology , Rats , Reward
13.
Nat Commun ; 10(1): 223, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30644390

ABSTRACT

Impaired function in the medial prefrontal cortex (mPFC) contributes to depression, and the therapeutic response produced by novel rapid-acting antidepressants such as ketamine are mediated by mPFC activity. The mPFC contains multiple types of pyramidal cells, but it is unclear whether a particular subtype mediates the rapid antidepressant actions of ketamine. Here we tested two major subtypes, Drd1 and Drd2 dopamine receptor expressing pyramidal neurons and found that activating Drd1 expressing pyramidal cells in the mPFC produces rapid and long-lasting antidepressant and anxiolytic responses. In contrast, photostimulation of Drd2 expressing pyramidal cells was ineffective across anxiety-like and depression-like measures. Disruption of Drd1 activity also blocked the rapid antidepressant effects of ketamine. Finally, we demonstrate that stimulation of mPFC Drd1 terminals in the BLA recapitulates the antidepressant effects of somatic stimulation. These findings aid in understanding the cellular target neurons in the mPFC and the downstream circuitry involved in rapid antidepressant responses.


Subject(s)
Antidepressive Agents/pharmacology , Ketamine/pharmacology , Optogenetics , Prefrontal Cortex/drug effects , Receptors, Dopamine D1/metabolism , Animals , Basolateral Nuclear Complex/radiation effects , Dopamine Agonists , Female , Male , Mice, Inbred C57BL , Prefrontal Cortex/metabolism , Receptors, Dopamine D2/metabolism
14.
Sci Transl Med ; 10(442)2018 05 23.
Article in English | MEDLINE | ID: mdl-29794060

ABSTRACT

The brain is emerging as an important regulator of systemic glucose metabolism. Accumulating data from animal and observational human studies suggest that striatal dopamine signaling plays a role in glucose regulation, but direct evidence in humans is currently lacking. We present a series of experiments supporting the regulation of peripheral glucose metabolism by striatal dopamine signaling. First, we present the case of a diabetes patient who displayed strongly reduced insulin requirements after treatment with bilateral deep brain stimulation (DBS) targeting the anterior limb of the internal capsule. Next, we show that DBS in this striatal area, which induced dopamine release, increased hepatic and peripheral insulin sensitivity in 14 nondiabetic patients with obsessive-compulsive disorder. Conversely, systemic dopamine depletion reduced peripheral insulin sensitivity in healthy subjects. Supporting these human data, we demonstrate that optogenetic activation of dopamine D1 receptor-expressing neurons in the nucleus accumbens increased glucose tolerance and insulin sensitivity in mice. Together, these findings support the hypothesis that striatal neuronal activity regulates systemic glucose metabolism.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , Glucose/metabolism , Animals , Deep Brain Stimulation , Diabetes Mellitus/metabolism , Female , Humans , Insulin Resistance , Liver/metabolism , Male , Mice , Mice, Transgenic , Middle Aged , Muscles/metabolism , Neurons/metabolism , Nucleus Accumbens/metabolism , Obsessive-Compulsive Disorder/metabolism , Optogenetics , Young Adult
15.
Int J Dev Neurosci ; 64: 2-7, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28652200

ABSTRACT

Novel therapeutic interventions for obesity and comorbid conditions require knowledge of the molecular elements playing a role in the development of obesity. Chronic low-grade inflammation has been consistently reported in obese individuals. In this study, we first determined whether key molecular modulators of inflammation, microRNA-155 (miR-155) and microRNA-146a (miR-146a), are regulated by an obesogenic diet within brain regions associated with reward, metabolism and energy balance. C57BL/6J mice were chronically exposed to a high-fat diet (HFD) or a standard chow (CTL). Significant reductions in the levels of miR-155 (82%) and miR-146a (41%) levels were observed within the nucleus accumbens of HFD mice compared to CTL. Further analysis of miR-155 regulation showed no significant changes in levels across peripheral tissue (white adipose, spleen, kidney or liver) between HFD and CTL mice. The effect of lower miR-155 on the development of obesity was determined by exposing wild-type (WT) and miR-155 knockout mice (miR-155 KO) to HFD. Male miR-155 KO gained significantly more weight than WT littermates. Metabolic analyses revealed that miR-155 KO significantly ate more HFD compared to WT, without differing in other metabolic measures including energy expenditure. Together, these data show that miR-155 is physiologically down-regulated after intake of an obesogenic diet, and that loss of miR-155 increases intake of an obesogenic diet. Moreover, these findings shed light on a potential miRNA-based mechanism contributing to the development of diet-induced obesity.


Subject(s)
Brain/metabolism , MicroRNAs/metabolism , Obesity/metabolism , Adipose Tissue, White/metabolism , Adiposity/genetics , Animals , Body Weight/genetics , Diet, High-Fat , Down-Regulation , Eating/genetics , Energy Metabolism/genetics , Kidney/metabolism , Liver/metabolism , Mice , Mice, Knockout , MicroRNAs/genetics , Obesity/genetics , Spleen/metabolism
16.
Cell Metab ; 25(3): 497-498, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28273473

ABSTRACT

Feeding involves the coordinated action of networks across many brain regions. New work recently published in Nature indicates that the prefrontal cortex, septum, and lateral hypothalamus circuits synchronize at gamma rhythms (30-90 Hz) to regulate feeding-related behaviors (Carus-Cadavieco et al., 2017).


Subject(s)
Feeding Behavior/physiology , Gamma Rhythm , Prefrontal Cortex , Humans
17.
J Neurosci ; 37(17): 4462-4471, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28336571

ABSTRACT

The ability to inhibit drinking is a significant challenge for recovering alcoholics, especially in the presence of alcohol-associated cues. Previous studies have demonstrated that the regulation of cue-guided alcohol seeking is mediated by the basolateral amygdala (BLA), nucleus accumbens (NAc), and medial prefrontal cortex (mPFC). However, given the high interconnectivity between these structures, it is unclear how mPFC projections to each subcortical structure, as well as projections between BLA and NAc, mediate alcohol-seeking behaviors. Here, we evaluate how cortico-striatal, cortico-amygdalar, and amygdalo-striatal projections control extinction and relapse in a rat model of alcohol seeking. Specifically, we used a combinatorial viral technique to express diphtheria toxin receptors in specific neuron populations based on their projection targets. We then used this strategy to create directionally selective ablations of three distinct pathways after acquisition of ethanol self-administration but before extinction and reinstatement. We demonstrate that ablation of mPFC neurons projecting to NAc, but not BLA, blocks cue-induced reinstatement of alcohol seeking and neither pathway is necessary for extinction of responding. Further, we show that ablating BLA neurons that project to NAc disrupts extinction of alcohol approach behaviors and attenuates reinstatement. Together, these data provide evidence that the mPFC→NAc pathway is necessary for cue-induced reinstatement of alcohol seeking, expand our understanding of how the BLA→NAc pathway regulates alcohol behavior, and introduce a new methodology for the manipulation of target-specific neural projections.SIGNIFICANCE STATEMENT The vast majority of recovering alcoholics will relapse at least once and understanding how the brain regulates relapse will be key to developing more effective behavior and pharmacological therapies for alcoholism. Given the high interconnectivity of cortical, striatal, and limbic structures that regulate alcohol intake, it has been difficult to disentangle how separate projections between them may control different aspects of these complex behaviors. Here, we demonstrate a new approach for noninvasively ablating each of these pathways and testing their necessity for both extinction and relapse. We show that inputs to the nucleus accumbens from medial prefrontal cortex and amygdala regulate alcohol-seeking behaviors differentially, adding to our understanding of the neural control of alcoholism.


Subject(s)
Alcoholism/physiopathology , Alcoholism/psychology , Amygdala/physiopathology , Cues , Extinction, Psychological , Nucleus Accumbens/physiopathology , Prefrontal Cortex/physiopathology , Animals , Behavior, Animal , Conditioning, Operant/drug effects , Ethanol/pharmacology , Male , Neural Pathways/physiopathology , Rats , Rats, Sprague-Dawley , Recurrence
18.
Front Behav Neurosci ; 10: 132, 2016.
Article in English | MEDLINE | ID: mdl-27458352

ABSTRACT

Regulation of body weight is an important strategy for small prey animals to avoid capture. Field and laboratory studies have shown that prey animals reduce body size when subjected to long-term predator stimuli. However, the causes of predator-induced weight regulation are highly variable and the underlying mechanisms remain unclear. Understanding this phenomenon is important for gaining a better understanding of how animals regulate body weight under ethologically relevant conditions and has implications for obesity. Here we expose inbred C57BL/6J mice to a fear-inducing odorant (2,4,5-trimethylthiazole; mT) to model predation-induced weight regulation. Eight week-old mice were put on a 45% high fat diet (HFD) or chow diet (5% fat) and exposed daily to mT, an equally aversive dose of butyric acid (BA), or a neutral control scent (almond). mT-exposed mice in both diet groups gained significantly less weight over a 6-week period than BA-exposed mice. This differential weight gain appears unlikely to be due to differences in food intake and activity level, or brown adipose thermogenesis between the mT and BA groups. However, following chronic mT exposure we find increases in ΔFosB protein, a marker for long-term neural plasticity, in the dorsomedial hypothalamus (DMH)-an area previously implicated in chronic stress and defensive responses, as well as weight regulation. This study establishes a simplified and robust laboratory model of predation-mediated weight regulation with inbred lab mice and fear-inducing odor, and suggests a likely, yet undetermined, metabolic adaptation as contributing to this response.

19.
eNeuro ; 3(2)2016.
Article in English | MEDLINE | ID: mdl-27257625

ABSTRACT

The influence of micronutrients on dopamine systems is not well defined. Using mice, we show a potential role for reduced dietary vitamin D3 (cholecalciferol) in promoting diet-induced obesity (DIO), food intake, and drug consumption while on a high fat diet. To complement these deficiency studies, treatments with exogenous fully active vitamin D3 (calcitriol, 10 µg/kg, i.p.) were performed. Nondeficient mice that were made leptin resistant with a high fat diet displayed reduced food intake and body weight after an acute treatment with exogenous calcitriol. Dopamine neurons in the midbrain and their target neurons in the striatum were found to express vitamin D3 receptor protein. Acute calcitriol treatment led to transcriptional changes of dopamine-related genes in these regions in naive mice, enhanced amphetamine-induced dopamine release in both naive mice and rats, and increased locomotor activity after acute amphetamine treatment (2.5 mg/kg, i.p.). Alternatively, mice that were chronically fed either the reduced D3 high fat or chow diets displayed less activity after acute amphetamine treatment compared with their respective controls. Finally, high fat deficient mice that were trained to orally consume liquid amphetamine (90 mg/L) displayed increased consumption, while nondeficient mice treated with calcitriol showed reduced consumption. Our findings suggest that reduced dietary D3 may be a contributing environmental factor enhancing DIO as well as drug intake while eating a high fat diet. Moreover, these data demonstrate that dopamine circuits are modulated by D3 signaling, and may serve as direct or indirect targets for exogenous calcitriol.


Subject(s)
Amphetamine/pharmacology , Calcitriol/pharmacology , Central Nervous System Agents/pharmacology , Corpus Striatum/drug effects , Diet, High-Fat/adverse effects , Obesity/drug therapy , Animals , Body Weight/drug effects , Body Weight/physiology , Cholecalciferol/deficiency , Cholecalciferol/metabolism , Corpus Striatum/metabolism , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Eating/drug effects , Eating/physiology , Male , Mice, Inbred C57BL , Motor Activity/drug effects , Motor Activity/physiology , Obesity/metabolism , Obesity/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...