Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
J Neurosci ; 44(20)2024 May 15.
Article in English | MEDLINE | ID: mdl-38594069

ABSTRACT

The brain bidirectionally communicates with the gut to control food intake and energy balance, which becomes dysregulated in obesity. For example, endocannabinoid (eCB) signaling in the small-intestinal (SI) epithelium is upregulated in diet-induced obese (DIO) mice and promotes overeating by a mechanism that includes inhibiting gut-brain satiation signaling. Upstream neural and molecular mechanism(s) involved in overproduction of orexigenic gut eCBs in DIO, however, are unknown. We tested the hypothesis that overactive parasympathetic signaling at the muscarinic acetylcholine receptors (mAChRs) in the SI increases biosynthesis of the eCB, 2-arachidonoyl-sn-glycerol (2-AG), which drives hyperphagia via local CB1Rs in DIO. Male mice were maintained on a high-fat/high-sucrose Western-style diet for 60 d, then administered several mAChR antagonists 30 min prior to tissue harvest or a food intake test. Levels of 2-AG and the activity of its metabolic enzymes in the SI were quantitated. DIO mice, when compared to those fed a low-fat/no-sucrose diet, displayed increased expression of cFos protein in the dorsal motor nucleus of the vagus, which suggests an increased activity of efferent cholinergic neurotransmission. These mice exhibited elevated levels of 2-AG biosynthesis in the SI, that was reduced to control levels by mAChR antagonists. Moreover, the peripherally restricted mAChR antagonist, methylhomatropine bromide, and the peripherally restricted CB1R antagonist, AM6545, reduced food intake in DIO mice for up to 24 h but had no effect in mice conditionally deficient in SI CB1Rs. These results suggest that hyperactivity at mAChRs in the periphery increases formation of 2-AG in the SI and activates local CB1Rs, which drives hyperphagia in DIO.


Subject(s)
Diet, High-Fat , Endocannabinoids , Glycerides , Mice, Inbred C57BL , Obesity , Signal Transduction , Synaptic Transmission , Animals , Endocannabinoids/metabolism , Male , Obesity/metabolism , Mice , Synaptic Transmission/physiology , Synaptic Transmission/drug effects , Diet, High-Fat/adverse effects , Signal Transduction/physiology , Glycerides/metabolism , Arachidonic Acids/metabolism , Eating/physiology , Eating/drug effects , Muscarinic Antagonists/pharmacology , Receptors, Muscarinic/metabolism , Brain-Gut Axis/physiology
2.
Am J Physiol Regul Integr Comp Physiol ; 326(2): R100-R109, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37899754

ABSTRACT

Cannabidiol (CBD) use has grown exponentially more popular in the last two decades, particularly among older adults (>55 yr), though very little is known about the effects of CBD use during age-associated metabolic dysfunction. In addition, synthetic analogues of CBD have generated great interest because they can offer a chemically pure product, which is free of plant-associated contaminants. To assess the effects of a synthetic analogue of CBD (H4CBD) on advanced metabolic dysfunction, a cohort of 41-wk-old Otsuka Long-Evans Tokushima Fatty (OLETF) rats were administered 200 mg H4CBD/kg by oral gavage for 4 wk. Animals were fed ad libitum and monitored alongside vehicle-treated OLETF and Long-Evans Tokushima Otsuka (LETO) rats, the lean-strain controls. An oral glucose-tolerance test (oGTT) was performed after 4 wk of treatment. When compared with vehicle-treated, OLETF rats, H4CBD decreased body mass (BM) by 15%, which was attributed to a significant loss in abdominal fat. H4CBD reduced glucose response (AUCglucose) by 29% (P < 0.001) and insulin resistance index (IRI) by 25% (P < 0.05) compared with OLETF rats. However, H4CBD did not statically reduce fasting blood glucose or plasma insulin, despite compensatory increases in skeletal muscle native insulin receptor (IR) protein expression (54%; P < 0.05). H4CBD reduced circulating adiponectin (40%; P < 0.05) and leptin (47%; P < 0.05) and increased ghrelin (75%; P < 0.01) compared with OLETF. Taken together, a chronic, high dose of H4CBD may improve glucose response, independent of static changes in insulin signaling, and these effects are likely a benefit of the profound loss of visceral adiposity.NEW & NOTEWORTHY Cannabis product use has grown in the last two decades despite the lack of research on Cannabidiol (CBD)-mediated effects on metabolism. Here, we provide seminal data on CBD effects during age-associated metabolic dysfunction. We gave 41-wk-old OLETF rats 200 mg H4CBD/kg by mouth for 4 wk and noted a high dose of H4CBD may improve glucose response, independent of static changes in insulin signaling, and these effects are likely a benefit of loss of visceral adiposity.


Subject(s)
Cannabidiol , Diabetes Mellitus, Type 2 , Metabolic Syndrome , Humans , Rats , Animals , Aged , Rats, Inbred OLETF , Metabolic Syndrome/drug therapy , Insulin , Glucose , Cannabidiol/pharmacology , Rats, Long-Evans , Diabetes Mellitus, Type 2/metabolism , Blood Glucose/metabolism
3.
Cannabis Cannabinoid Res ; 8(6): 1045-1059, 2023 12.
Article in English | MEDLINE | ID: mdl-37862126

ABSTRACT

Background: Increasing evidence suggests that the endocannabinoid system (ECS) in the brain controls anxiety and may be a therapeutic target for the treatment of anxiety disorders. For example, both pharmacological and genetic disruption of cannabinoid receptor subtype-1 (CB1R) signaling in the central nervous system is associated with increased anxiety-like behaviors in rodents, while activating the system is anxiolytic. Sex is also a critical factor that controls the behavioral expression of anxiety; however, roles for the ECS in the gut in these processes and possible differences between sexes are largely unknown. Objective: In this study, we aimed to determine if CB1Rs in the intestinal epithelium exert control over anxiety-like behaviors in a sex-dependent manner. Methods: We subjected male and female mice with conditional deletion of CB1Rs in the intestinal epithelium (intCB1-/-) and controls (intCB1+/+) to the elevated plus maze (EPM), light/dark box, and open field test. Corticosterone (CORT) levels in plasma were measured at baseline and immediately after EPM exposure. Results: When compared with intCB1+/+ male mice, intCB1-/- male mice exhibited reduced levels of anxiety-like behaviors in the EPM and light/dark box. In contrast to male mice, no differences were found between female intCB1+/+ and intCB1-/- mice. Circulating CORT was higher in female versus male mice for both genotype groups at baseline and after EPM exposure; however, there was no effect of genotype on CORT levels. Conclusions: Collectively, these results indicate that genetic deletion of CB1Rs in the intestinal epithelium is associated with an anxiolytic phenotype in a sex-dependent manner.


Subject(s)
Anxiety Disorders , Anxiety , Receptor, Cannabinoid, CB1 , Animals , Female , Male , Mice , Anxiety/genetics , Anxiety/metabolism , Anxiety Disorders/genetics , Anxiety Disorders/metabolism , Corticosterone , Receptors, Cannabinoid/genetics , Receptors, Cannabinoid/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism
4.
Sci Rep ; 13(1): 12666, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542065

ABSTRACT

Mutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene are linked to Fragile X Syndrome, the most common monogenic cause of intellectual disability and autism. People affected with mutations in FMR1 have higher incidence of obesity, but the mechanisms are largely unknown. In the current study, we determined that male Fmr1 knockout mice (KO, Fmr1-/y), but not female Fmr1-/-, exhibit increased weight when compared to wild-type controls, similarly to humans with FMR1 mutations. No differences in food or water intake were found between groups; however, male Fmr1-/y display lower locomotor activity, especially during their active phase. Moreover, Fmr1-/y have olfactory dysfunction determined by buried food test, although they exhibit increased compulsive behavior, determined by marble burying test. Since olfactory brain regions communicate with hypothalamic regions that regulate food intake, including POMC neurons that also regulate locomotion, we examined POMC neuron innervation and numbers in Fmr1-/y mice. POMC neurons express Fmrp, and POMC neurons in Fmr1-/y have higher inhibitory GABAergic synaptic inputs. Consistent with increased inhibitory innervation, POMC neurons in the Fmr1-/y mice exhibit lower activity, based on cFOS expression. Notably, Fmr1-/y mice have fewer POMC neurons than controls, specifically in the rostral arcuate nucleus, which could contribute to decreased locomotion and increased body weight. These results suggest a role for Fmr1 in the regulation of POMC neuron function and the etiology of Fmr1-linked obesity.


Subject(s)
Fragile X Syndrome , Pro-Opiomelanocortin , Animals , Male , Mice , Body Weight , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/metabolism , Mice, Knockout , Mutation , Obesity/genetics , Pro-Opiomelanocortin/metabolism
5.
Endocrinology ; 164(9)2023 08 01.
Article in English | MEDLINE | ID: mdl-37490843

ABSTRACT

Modulation of bile acid (BA) structure is a potential strategy for obesity and metabolic disease treatment. BAs act not only as signaling molecules involved in energy expenditure and glucose homeostasis, but also as regulators of food intake. The structure of BAs, particularly the position of the hydroxyl groups of BAs, impacts food intake partly by intestinal effects: (1) modulating the activity of N-acyl phosphatidylethanolamine phospholipase D, which produces the anorexigenic bioactive lipid oleoylethanolamide (OEA) or (2) regulating lipid absorption and the gastric emptying-satiation pathway. We hypothesized that 16α-hydroxylated BAs uniquely regulate food intake because of the long intermeal intervals in snake species in which these BAs are abundant. However, the effects of 16α-hydroxylated BAs in mammals are completely unknown because they are not naturally found in mammals. To test the effect of 16α-hydroxylated BAs on food intake, we isolated the 16α-hydroxylated BA pythocholic acid from ball pythons (Python regius). Pythocholic acid or deoxycholic acid (DCA) was given by oral gavage in mice. DCA is known to increase N-acyl phosphatidylethanolamine phospholipase D activity better than other mammalian BAs. We evaluated food intake, OEA levels, and gastric emptying in mice. We successfully isolated pythocholic acid from ball pythons for experimental use. Pythocholic acid treatment significantly decreased food intake in comparison to DCA treatment, and this was associated with increased jejunal OEA, but resulted in no change in gastric emptying or lipid absorption. The exogenous BA pythocholic acid is a novel regulator of food intake and the satiety signal for OEA in the mouse intestine.


Subject(s)
Bile Acids and Salts , Phospholipase D , Mice , Male , Animals , Phospholipase D/metabolism , Phospholipase D/pharmacology , Phosphatidylethanolamines/pharmacology , Eating , Mammals/metabolism
6.
Cell Metab ; 35(7): 1227-1241.e7, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37267956

ABSTRACT

One of cannabis' most iconic effects is the stimulation of hedonic high-calorie eating-the "munchies"-yet habitual cannabis users are, on average, leaner than non-users. We asked whether this phenotype might result from lasting changes in energy balance established during adolescence, when use of the drug often begins. We found that daily low-dose administration of cannabis' intoxicating constituent, Δ9-tetrahydrocannabinol (THC), to adolescent male mice causes an adult metabolic phenotype characterized by reduced fat mass, increased lean mass and utilization of fat as fuel, partial resistance to diet-induced obesity and dyslipidemia, enhanced thermogenesis, and impaired cold- and ß-adrenergic receptor-stimulated lipolysis. Further analyses revealed that this phenotype is associated with molecular anomalies in the adipose organ, including ectopic overexpression of muscle-associated proteins and heightened anabolic processing. Thus, adolescent exposure to THC may promote an enduring "pseudo-lean" state that superficially resembles healthy leanness but might in fact be rooted in adipose organ dysfunction.


Subject(s)
Dronabinol , Obesity , Mice , Male , Animals , Dronabinol/pharmacology , Adiposity , Energy Intake , Homeostasis
7.
Front Endocrinol (Lausanne) ; 14: 1049708, 2023.
Article in English | MEDLINE | ID: mdl-37008952

ABSTRACT

Introduction: Polybrominated diphenyl ethers (PBDEs) are commercially used flame retardants that bioaccumulate in human tissues, including breast milk. PBDEs produce endocrine and metabolic disruption in experimental animals and have been associated with diabetes and metabolic syndrome (MetS) in humans, however, their sex-specific diabetogenic effects are not completely understood. Our past works show glucolipid dysregulation resulting from perinatal exposure to the commercial penta-mixture of PBDEs, DE-71, in C57BL/6 female mice. Methods: As a comparison, in the current study, the effects of DE-71 on glucose homeostasis in male offspring was examined. C57BL/6N dams were exposed to DE-71 at 0.1 mg/kg/d (L-DE-71), 0.4 mg/kg/d (H-DE-71), or received corn oil vehicle (VEH/CON) for a total of 10 wks, including gestation and lactation and their male offspring were examined in adulthood. Results: Compared to VEH/CON, DE-71 exposure produced hypoglycemia after a 11 h fast (H-DE-71). An increased fast duration from 9 to 11 h resulted in lower blood glucose in both DE-71 exposure groups. In vivo glucose challenge showed marked glucose intolerance (H-DE-71) and incomplete clearance (L- and H-DE-71). Moreover, L-DE-71-exposed mice showed altered glucose responses to exogenous insulin, including incomplete glucose clearance and/or utilization. In addition, L-DE-71 produced elevated levels of plasma glucagon and the incretin, active glucagon-like peptide-1 (7-36) amide (GLP-1) but no changes were detected in insulin. These alterations, which represent criteria used clinically to diagnose diabetes in humans, were accompanied with reduced hepatic glutamate dehydrogenase enzymatic activity, elevated adrenal epinephrine and decreased thermogenic brown adipose tissue (BAT) mass, indicating involvement of several organ system targets of PBDEs. Liver levels of several endocannabinoid species were not altered. Discussion: Our findings demonstrate that chronic, low-level exposure to PBDEs in dams can dysregulate glucose homeostasis and glucoregulatory hormones in their male offspring. Previous findings using female siblings show altered glucose homeostasis that aligned with a contrasting diabetogenic phenotype, while their mothers displayed more subtle glucoregulatory alterations, suggesting that developing organisms are more susceptible to DE-71. We summarize the results of the current work, generated in males, considering previous findings in females. Collectively, these findings offer a comprehensive account of differential effects of environmentally relevant PBDEs on glucose homeostasis and glucoregulatory endocrine dysregulation of developmentally exposed male and female mice.


Subject(s)
Diabetes Mellitus , Flame Retardants , Insulins , Pregnancy , Animals , Mice , Male , Humans , Female , Halogenated Diphenyl Ethers/toxicity , Flame Retardants/toxicity , Mice, Inbred C57BL , Glucose
9.
Front Endocrinol (Lausanne) ; 13: 997304, 2022.
Article in English | MEDLINE | ID: mdl-36277707

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) are a class of flame-retardant organohalogen pollutants that act as endocrine/neuroendocrine disrupting chemicals (EDCs). In humans, exposure to brominated flame retardants (BFR) or other environmentally persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and novel organophosphate flame retardants has been associated with increasing trends of diabetes and metabolic disease. However, the effects of PBDEs on metabolic processes and their associated sex-dependent features are poorly understood. The metabolic-disrupting effects of perinatal exposure to industrial penta-PBDE mixture, DE-71, on male and female progeny of C57BL/6N mouse dams were examined in adulthood. Dams were exposed to environmentally relevant doses of PBDEs daily for 10 weeks (p.o.): 0.1 (L-DE-71) and 0.4 mg/kg/d (H-DE-71) and offspring parameters were compared to corn oil vehicle controls (VEH/CON). The following lipid metabolism indices were measured: plasma cholesterol, triglycerides, adiponectin, leptin, and liver lipids. L-DE-71 female offspring were particularly affected, showing hypercholesterolemia, elevated liver lipids and fasting plasma leptin as compared to same-sex VEH/CON, while L- and H-DE-71 male F1 only showed reduced plasma adiponectin. Using the quantitative Folch method, we found that mean liver lipid content was significantly elevated in L-DE-71 female offspring compared to controls. Oil Red O staining revealed fatty liver in female offspring and dams. General measures of adiposity, body weight, white and brown adipose tissue (BAT), and lean and fat mass were weighed or measured using EchoMRI. DE-71 did not produce abnormal adiposity, but decreased BAT depots in L-DE-71 females and males relative to same-sex VEH/CON. To begin to address potential central mechanisms of deregulated lipid metabolism, we used RT-qPCR to quantitate expression of hypothalamic genes in energy-regulating circuits that control lipid homeostasis. Both doses of DE-71 sex-dependently downregulated hypothalamic expression of Lepr, Stat3, Mc4r, Agrp, Gshr in female offspring while H-DE-71 downregulated Npy in exposed females relative to VEH/CON. In contrast, exposed male offspring displayed upregulated Stat3 and Mc4r. Intestinal barrier integrity was measured using FITC-dextran since it can lead to systemic inflammation that leads to liver damage and metabolic disease, but was not affected by DE-71 exposure. These findings indicate that maternal transfer of PBDEs disproportionately endangers female offspring to lipid metabolic reprogramming that may exaggerate risk for adult metabolic disease.


Subject(s)
Endocrine Disruptors , Environmental Pollutants , Flame Retardants , Polychlorinated Biphenyls , Animals , Female , Male , Mice , Pregnancy , Adiponectin , Agouti-Related Protein , Cholesterol , Corn Oil , Endocrine Disruptors/toxicity , Environmental Pollutants/toxicity , Flame Retardants/toxicity , Halogenated Diphenyl Ethers/toxicity , Homeostasis , Leptin , Mice, Inbred C57BL , Organophosphates , Persistent Organic Pollutants , Triglycerides , Sex Factors
10.
Int J Mol Sci ; 23(18)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36142461

ABSTRACT

The gut barrier provides protection from pathogens and its function is compromised in diet-induced obesity (DIO). The endocannabinoid system in the gut is dysregulated in DIO and participates in gut barrier function; however, whether its activity is protective or detrimental for gut barrier integrity is unclear. We used mice conditionally deficient in cannabinoid receptor subtype-1 (CB1R) in the intestinal epithelium (intCB1-/-) to test the hypothesis that CB1Rs in intestinal epithelial cells provide protection from diet-induced gut barrier dysfunction. Control and intCB1-/- mice were placed for eight weeks on a high-fat/sucrose Western-style diet (WD) or a low-fat/no-sucrose diet. Endocannabinoid levels and activity of their metabolic enzymes were measured in the large-intestinal epithelium (LI). Paracellular permeability was tested in vivo, and expression of genes for gut barrier components and inflammatory markers were analyzed. Mice fed WD had (i) reduced levels of endocannabinoids in the LI due to lower activity of their biosynthetic enzymes, and (ii) increased permeability that was exacerbated in intCB1-/- mice. Moreover, intCB1-/- mice fed WD had decreased expression of genes for tight junction proteins and increased expression of inflammatory markers in LI. These results suggest that CB1Rs in the intestinal epithelium serve a protective role in gut barrier function in DIO.


Subject(s)
Intestinal Mucosa/metabolism , Receptor, Cannabinoid, CB1/metabolism , Animals , Diet, High-Fat/adverse effects , Endocannabinoids/metabolism , Mice , Mice, Inbred C57BL , Obesity/genetics , Obesity/metabolism , Receptors, Cannabinoid/metabolism , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism
11.
Acta Histochem ; 124(6): 151934, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35908509

ABSTRACT

Our aim is to examine the relationship between the submandibular gland (SMG) and the pancreas by discussing similarities and differences in their embryology, histology, physiology, and pathology, and to introduce the question of classifying them as primary or secondary organs. From an embryonic standpoint, SMG and pancreas originate from different germ layers, yet they share a variety of similar elements in their morphogenesis, branching process, and mesenchymal molecular interaction. The histological and anatomical comparison between these two organs reveals parallels in the basic function of their exocrine physiology. With both the SMG and pancreas playing a significant role in digestive processes, there are also common aspects in their exocrine function. Furthermore, recent research has unraveled an intricate novel system of hormonal interaction between the salivary glands and pancreas which regulates pancreatic cellular differentiation and injury repair mechanism. Lastly, there are analogous features in the pathological mechanisms and inflammatory processes in the course of chronic disease in both organs. By defining this close relationship between the SMG and the pancreas, we aim to provide alternative insights for scholars and physicians in the shared characteristics of basic function of these organs, and possible pathological consequences of their dysregulation.


Subject(s)
Salivary Glands , Submandibular Gland , Morphogenesis/physiology , Pancreas
12.
Physiol Behav ; 245: 113675, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34929258

ABSTRACT

The endocannabinoid (eCB) system in the gut communicates with the body and brain as part of the homeostatic mechanisms that affect energy balance. Although perhaps best known for its effects on energy intake, the eCB system also regulates voluntary locomotor behavior. Here, we examined gut eCB concentrations in relation to voluntary exercise, specifically in mice selectively bred for high voluntary wheel running behavior. We measured gut eCBs in four replicate non-selected Control (C) lines and four replicate lines of High Runner (HR) mice that had been selectively bred for 74 generations based on the average number of wheel revolutions on days 5 and 6 of a 6-day period of wheel access when young adults. On average, mice from HR lines run voluntarily on wheels ∼3-fold more than C mice on a daily basis. A recent study showed that circulating levels of primary endocannabinoids 2-arachidonoyl-sn-glycerol (2-AG) and anandamide (AEA) are altered by six days of wheel access, by acute wheel running, and differ between HR and C mice in sex-specific ways [1]. We hypothesized that eCBs in the upper small-intestinal epithelium (i.e., proximal jejunum), a region firmly implicated in eCB signaling, would differ between HR and C mice (linetype), between the sexes, between mice housed with vs. without wheels for six days, and would covary with amounts of acute running and/or home-cage activity (during the previous 30 minutes). We used the same 192 mice as in [1] , half males and half females, half HR and half C (all 8 lines), and half either given or not given access to wheels for six days. We assessed the eCBs, 2-AG and AEA, and their analogs docosahexaenoylglycerol (DHG), docosahexaenoylethanolamide (DHEA), and oleoylethanolamide (OEA). Both 2-AG and DHG showed a significant 3-way interaction of linetype, wheel access, and sex. In addition, HR mice had lower concentrations of 2-AG in the small-intestinal epithelium when compared to C mice, which may be functionally related to differences in locomotor activity or to differences in body composition and/or food consumption. Moreover, the amount of home-cage activity during the prior 30 min was a negative predictor of 2-AG and AEA concentrations in jejunum mucosa, particularly in the mice with no wheel access. Lastly, 2-AG, but not AEA, was significantly correlated with 2-AG in plasma in the same mice.


Subject(s)
Endocannabinoids , Selective Breeding , Animals , Body Composition/physiology , Female , Intestinal Mucosa , Male , Mice , Motor Activity/physiology
13.
J Neurodev Disord ; 13(1): 47, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645383

ABSTRACT

BACKGROUND: Individuals with Fragile X syndrome (FXS) and autism spectrum disorder (ASD) exhibit an array of symptoms, including sociability deficits, increased anxiety, hyperactivity, and sensory hyperexcitability. It is unclear how endocannabinoid (eCB) modulation can be targeted to alleviate neurophysiological abnormalities in FXS as behavioral research reveals benefits to inhibiting cannabinoid (CB) receptor activation and increasing endocannabinoid ligand levels. Here, we hypothesize that enhancement of 2-arachidonoyl-sn-glycerol (2-AG) in Fragile X mental retardation 1 gene knock-out (Fmr1 KO) mice may reduce cortical hyperexcitability and behavioral abnormalities observed in FXS. METHODS: To test whether an increase in 2-AG levels normalized cortical responses in a mouse model of FXS, animals were subjected to electroencephalography (EEG) recording and behavioral assessment following treatment with JZL-184, an irreversible inhibitor of monoacylglycerol lipase (MAGL). Assessment of 2-AG was performed using lipidomic analysis in conjunction with various doses and time points post-administration of JZL-184. Baseline electrocortical activity and evoked responses to sound stimuli were measured using a 30-channel multielectrode array (MEA) in adult male mice before, 4 h, and 1 day post-intraperitoneal injection of JZL-184 or vehicle. Behavior assessment was done using the open field and elevated plus maze 4 h post-treatment. RESULTS: Lipidomic analysis showed that 8 mg/kg JZL-184 significantly increased the levels of 2-AG in the auditory cortex of both Fmr1 KO and WT mice 4 h post-treatment compared to vehicle controls. EEG recordings revealed a reduction in the abnormally enhanced baseline gamma-band power in Fmr1 KO mice and significantly improved evoked synchronization to auditory stimuli in the gamma-band range post-JZL-184 treatment. JZL-184 treatment also ameliorated anxiety-like and hyperactivity phenotypes in Fmr1 KO mice. CONCLUSIONS: Overall, these results indicate that increasing 2-AG levels may serve as a potential therapeutic approach to normalize cortical responses and improve behavioral outcomes in FXS and possibly other ASDs.


Subject(s)
Autism Spectrum Disorder , Fragile X Mental Retardation Protein , Animals , Endocannabinoids , Fragile X Mental Retardation Protein/genetics , Glycerol , Male , Mice , Mice, Knockout
14.
Front Physiol ; 12: 699712, 2021.
Article in English | MEDLINE | ID: mdl-34335305

ABSTRACT

The endocannabinoid system is expressed in cells throughout the body and controls a variety of physiological and pathophysiological functions. We describe robust and reproducible UPLC-MS/MS-based methods for analyzing metabolism of the endocannabinoids, 2-arachidonoyl-sn-glycerol and arachidonoyl ethanolamide, and related monoacylglycerols (MAGs) and fatty acid ethanolamides (FAEs), respectively, in mouse mucosal tissues (i.e., intestine and lung). These methods are optimized for analysis of activity of the MAG biosynthetic enzyme, diacylglycerol lipase (DGL), and MAG degradative enzymes, monoacylglycerol lipase (MGL) and alpha/beta hydrolase domain containing-6 (ABHD6). Moreover, we describe a novel UPLC-MS/MS-based method for analyzing activity of the FAE degradative enzyme, fatty acid amide hydrolase (FAAH), that does not require use of radioactive substrates. In addition, we describe in vivo pharmacological methods to inhibit MAG biosynthesis selectively in the mouse small-intestinal epithelium. These methods will be useful for profiling endocannabinoid metabolism in rodent mucosal tissues in health and disease.

15.
J Nutr Biochem ; 97: 108797, 2021 11.
Article in English | MEDLINE | ID: mdl-34126202

ABSTRACT

Agricultural workers, especially those who work in swine confinement facilities, are at increased risk for developing pulmonary diseases including asthma, chronic obstructive pulmonary disease, and chronic bronchitis due to exposures to fumes, vapors, and organic dust. Repetitive exposure to agricultural dust leads to unresolved inflammation, a common underlying mechanism that worsens lung disease. Besides occupational exposure to dusts, diet also significantly contributes to inflammation and disease progression. Since DHA (docosahexaenoic acid), a polyunsaturated omega-3 fatty acid and its bioactive metabolites have key roles in inflammation resolution, we rationalized that individuals chronically exposed to organic dusts can benefit from dietary modifications. Here, we evaluated the role of DHA in modifying airway inflammation in a murine model of repetitive exposure to an aqueous extract of agricultural dust (three-week exposure to swine confinement dust extract, HDE) and after a one-week resolution/recovery period. We found that mice fed a high DHA diet had significantly increased bronchoalveolar lavage fluid (BALF) levels of DHA-derived resolvins and lower TNFα along with altered plasma levels of endocannabinoids and related lipid mediators. Following the one-week recovery we identified significantly reduced BALF cellularity and cytokine/chemokine release along with increased BALF amphiregulin and resolvins in DHA diet-fed versus control diet-fed mice challenged with HDE. We further report observations on the effects of repetitive HDE exposure on lung Ym1+ and Arg-1+ macrophages. Overall, our findings support a protective role for DHA and identify DHA-derived resolvins and endocannabinoids among the potential mediators of DHA in altering airway inflammation in chronic agricultural dust exposure.


Subject(s)
Diet , Docosahexaenoic Acids/administration & dosage , Dust , Inhalation Exposure/adverse effects , Respiratory Tract Diseases/diet therapy , Agricultural Workers' Diseases/diet therapy , Agricultural Workers' Diseases/pathology , Animals , Bronchoalveolar Lavage Fluid/chemistry , Disease Models, Animal , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/metabolism , Endocannabinoids/blood , Fatty Acids, Unsaturated/blood , Inflammation/diet therapy , Inflammation/pathology , Lung/pathology , Macrophages, Alveolar/physiology , Male , Mice , Mice, Inbred C57BL , Respiratory Tract Diseases/pathology , Swine , Tumor Necrosis Factor-alpha/metabolism
16.
Cannabis Cannabinoid Res ; 6(3): 242-252, 2021 06.
Article in English | MEDLINE | ID: mdl-33998896

ABSTRACT

Introduction: Over 1 billion humans carry infectious helminth parasites that can lead to chronic comorbidities such as anemia and growth retardation in children. Helminths induce a T-helper type 2 (Th2) immune response in the host and can cause severe tissue damage and fibrosis if chronic. We recently reported that mice infected with the soil-transmitted helminth, Nippostrongylus brasiliensis, displayed elevated levels of endocannabinoids (eCBs) in the lung and intestine. eCBs are lipid-signaling molecules that control inflammation; however, their function in infection is not well defined. Materials and Methods: A combination of pharmacological approaches and genetic mouse models was used to investigate roles for the eCB system in inflammatory responses and lung injury in mice during parasitic infection with N. brasiliensis. Results: Hemorrhaging of lung tissue in mice infected with N. brasiliensis was exacerbated by inhibiting peripheral cannabinoid receptor subtype-1 (CB1Rs) with the peripherally restricted CB1R antagonist, AM6545. In addition, these mice exhibited an increase in nonfunctional alveolar space and prolonged airway eosinophilia compared to vehicle-treated infected mice. In contrast to mice treated with AM6545, infected cannabinoid receptor subtype-2-null mice (Cnr2-/-) did not display any changes in these parameters compared to wild-type mice. Conclusions: Roles for the eCB system in Th2 immune responses are not well understood; however, increases in its activity in response to infection suggest an immunomodulatory role. Moreover, these findings suggest a role for eCB signaling at CB1Rs but not cannabinoid receptor subtypes-2 in the resolution of Th2 inflammatory responses, which become host destructive over time.


Subject(s)
Endocannabinoids/immunology , Lung/pathology , Nippostrongylus/immunology , Receptor, Cannabinoid, CB1/immunology , Strongylida Infections/immunology , Animals , Eosinophilia , Hemorrhage , Lung/immunology , Lung/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Morpholines/pharmacology , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB2/deficiency , Th2 Cells/immunology
17.
Nutrients ; 13(4)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33916974

ABSTRACT

Gut-brain signaling controls food intake and energy homeostasis, and its activity is thought to be dysregulated in obesity. We will explore new studies that suggest the endocannabinoid (eCB) system in the upper gastrointestinal tract plays an important role in controlling gut-brain neurotransmission carried by the vagus nerve and the intake of palatable food and other reinforcers. A focus will be on studies that reveal both indirect and direct interactions between eCB signaling and vagal afferent neurons. These investigations identify (i) an indirect mechanism that controls nutrient-induced release of peptides from the gut epithelium that directly interact with corresponding receptors on vagal afferent neurons, and (ii) a direct mechanism via interactions between eCBs and cannabinoid receptors expressed on vagal afferent neurons. Moreover, the impact of diet-induced obesity on these pathways will be considered.


Subject(s)
Brain/physiology , Eating/physiology , Endocannabinoids/metabolism , Gastrointestinal Tract/physiology , Obesity/physiopathology , Animals , Endocannabinoids/chemistry , Humans , Synaptic Transmission/physiology
18.
Am J Nephrol ; 52(1): 59-68, 2021.
Article in English | MEDLINE | ID: mdl-33601382

ABSTRACT

BACKGROUND: Patients with ESRD on maintenance hemodialysis (MHD) are particularly susceptible to dysregulation of energy metabolism, which may manifest as protein energy wasting and cachexia. In recent years, the endocannabinoid system has been shown to play an important role in energy metabolism with potential relevance in ESRD. N-acylethanolamines are a class of fatty acid amides which include the major endocannabinoid ligand, anandamide, and the endogenous peroxisome proliferator-activated receptor-α agonists, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). METHODS: Serum concentrations of OEA and PEA were measured in MHD patients and their correlations with various clinical/laboratory indices were examined. Secondarily, we evaluated the association of circulating PEA and OEA levels with 12-month all-cause mortality. RESULTS: Both serum OEA and PEA levels positively correlated with high-density lipoprotein-cholesterol levels and negatively correlated with body fat and body anthropometric measures. Serum OEA levels correlated positively with serum interleukin-6 (IL-6) (rho = 0.19; p = 0.004). Serum PEA and IL-6 showed a similar but nonsignificant trend (rho = 0.12; p = 0.07). Restricted cubic spline analyses showed that increasing serum OEA and PEA both trended toward higher mortality risk, and these associations were statistically significant for PEA (PEA ≥4.7 pmol/mL; reference: PEA <4.7 pmol/mL) after adjustments in a Cox model (hazard ratio 2.99; 95% confidence interval 1.04, 8.64). CONCLUSIONS: In MHD patients, OEA and PEA are significantly correlated with variables related to lipid metabolism and body mass. Additionally, higher serum levels of PEA are associated with mortality risk. Future studies are needed to examine the potential mechanisms responsible for these findings and their clinical implications.


Subject(s)
Amides/blood , Endocannabinoids/blood , Ethanolamines/blood , Kidney Failure, Chronic/blood , Kidney Failure, Chronic/therapy , Oleic Acids/blood , Palmitic Acids/blood , Renal Dialysis , Adult , Aged , Female , Humans , Male , Middle Aged
19.
J Clin Med ; 9(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271850

ABSTRACT

Pain in Sickle Cell Disease (SCD) is a major comorbidity and unique with acute pain due to recurrent and episodic vaso-occlusive crises as well as chronic pain, which can span an individual's entire life. Opioids are the mainstay treatment for pain in SCD. Due to recent health crises raised by adverse effects including deaths from opioid use, pain management in SCD is adversely affected. Cannabis and its products are most widely used for pain in multiple conditions and also by patients with SCD on their own. With the availability of "Medical Cannabis" and approval to use cannabis as medicine across majority of States in the United States as well as over-the-counter preparations, cannabis products are being used increasingly for SCD. The reliability of many of these products remains questionable, which poses a major health risk to the vulnerable individuals seeking pain relief. Therefore, this review provides up to date insights into available categories of cannabis-based treatment strategies, their mechanism of action and pre-clinical and clinical outcomes in SCD. It provides evidence for the benefits and risks of cannabis use in SCD and cautions about the unreliable and unvalidated products that may be adulterated with life-threatening non-cannabis compounds.

20.
Sci Rep ; 10(1): 18102, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33093533

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) are brominated flame retardant chemicals and environmental contaminants with endocrine-disrupting properties that are associated with diabetes and metabolic syndrome in humans. However, their diabetogenic actions are not completely characterized or understood. In this study, we investigated the effects of DE-71, a commercial penta-mixture of PBDEs, on glucoregulatory parameters in a perinatal exposure model using female C57Bl/6 mice. Results from in vivo glucose and insulin tolerance tests and ex vivo analyses revealed fasting hyperglycemia, glucose intolerance, reduced sensitivity and delayed glucose clearance after insulin challenge, decreased thermogenic brown adipose tissue mass, and exaggerated hepatic endocannabinoid tone in F1 offspring exposed to 0.1 mg/kg DE-71 relative to control. DE-71 effects on F0 dams were more limited indicating that indirect exposure to developing offspring is more detrimental. Other ex vivo glycemic correlates occurred more generally in exposed F0 and F1, i.e., reduced plasma insulin and altered glucoregulatory endocrines, exaggerated sympathoadrenal activity and reduced hepatic glutamate dehydrogenase enzymatic activity. Hepatic PBDE congener analysis indicated maternal transfer of BDE-28 and -153 to F1 at a collective level of 200 ng/g lipid, in range with maximum values detected in serum of human females. Given the persistent diabetogenic phenotype, especially pronounced in female offspring after developmental exposure to environmentally relevant levels of DE-71, additional animal studies should be conducted that further characterize PBDE-induced diabetic pathophysiology and identify critical developmental time windows of susceptibility. Longitudinal human studies should also be conducted to determine the risk of long-lasting metabolic consequences after maternal transfer of PBDEs during early-life development.


Subject(s)
Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Endocannabinoids/metabolism , Halogenated Diphenyl Ethers/toxicity , Hormones/blood , Liver/metabolism , Prenatal Exposure Delayed Effects/pathology , Animals , Blood Glucose/analysis , Diabetes Mellitus/chemically induced , Female , Glucagon/blood , Glucagon-Like Peptide 1/blood , Insulin/blood , Male , Mice , Mice, Inbred C57BL , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...