Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Cell Genom ; 4(5): 100557, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723607

ABSTRACT

We explored the dysregulation of G-protein-coupled receptor (GPCR) ligand systems in cancer transcriptomics datasets to uncover new therapeutics opportunities in oncology. We derived an interaction network of receptors with ligands and their biosynthetic enzymes. Multiple GPCRs are differentially regulated together with their upstream partners across cancer subtypes and are associated to specific transcriptional programs and to patient survival patterns. The expression of both receptor-ligand (or enzymes) partners improved patient stratification, suggesting a synergistic role for the activation of GPCR networks in modulating cancer phenotypes. Remarkably, we identified many such axes across several cancer molecular subtypes, including many involving receptor-biosynthetic enzymes for neurotransmitters. We found that GPCRs from these actionable axes, including, e.g., muscarinic, adenosine, 5-hydroxytryptamine, and chemokine receptors, are the targets of multiple drugs displaying anti-growth effects in large-scale, cancer cell drug screens, which we further validated. We have made the results generated in this study freely available through a webapp (gpcrcanceraxes.bioinfolab.sns.it).


Subject(s)
Neoplasms , Receptors, G-Protein-Coupled , Signal Transduction , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Ligands , Gene Expression Regulation, Neoplastic
2.
Cancer Cell ; 42(4): 662-681.e10, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38518775

ABSTRACT

Intratumor morphological heterogeneity of pancreatic ductal adenocarcinoma (PDAC) predicts clinical outcomes but is only partially understood at the molecular level. To elucidate the gene expression programs underpinning intratumor morphological variation in PDAC, we investigated and deconvoluted at single cell level the molecular profiles of histologically distinct clusters of PDAC cells. We identified three major morphological and functional variants that co-exist in varying proportions in all PDACs, display limited genetic diversity, and are associated with a distinct organization of the extracellular matrix: a glandular variant with classical ductal features; a transitional variant displaying abortive ductal structures and mixed endodermal and myofibroblast-like gene expression; and a poorly differentiated variant lacking ductal features and basement membrane, and showing neuronal lineage priming. Ex vivo and in vitro evidence supports the occurrence of dynamic transitions among these variants in part influenced by extracellular matrix composition and stiffness and associated with local, specifically neural, invasion.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Basement Membrane/metabolism , Nervous System
3.
Science ; 373(6561): eabj0486, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34529467

ABSTRACT

Inflammation is a major risk factor for pancreatic ductal adenocarcinoma (PDAC). When occurring in the context of pancreatitis, KRAS mutations accelerate tumor development in mouse models. We report that long after its complete resolution, a transient inflammatory event primes pancreatic epithelial cells to subsequent transformation by oncogenic KRAS. Upon recovery from acute inflammation, pancreatic epithelial cells display an enduring adaptive response associated with sustained transcriptional and epigenetic reprogramming. Such adaptation enables the reactivation of acinar-to-ductal metaplasia (ADM) upon subsequent inflammatory events, thereby limiting tissue damage through a rapid decrease of zymogen production. We propose that because activating mutations of KRAS maintain an irreversible ADM, they may be beneficial and under strong positive selection in the context of recurrent pancreatitis.


Subject(s)
Acinar Cells/pathology , Carcinogenesis , Carcinoma, Pancreatic Ductal/pathology , Genes, ras , Pancreas/pathology , Pancreatitis/physiopathology , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/physiopathology , Cell Transformation, Neoplastic , Cells, Cultured , Cellular Reprogramming , Chromatin/metabolism , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Enzyme Precursors/metabolism , Epigenesis, Genetic , Epithelial Cells/pathology , Epithelial Cells/physiology , Female , MAP Kinase Signaling System , Male , Metaplasia , Mice , Mutation , Pancreas/metabolism , Pancreatitis/genetics , Pancreatitis/immunology , Spheroids, Cellular , Transcriptome
4.
EMBO J ; 40(13): e107206, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33844319

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC), one of the most highly lethal tumors, is characterized by complex histology, with a massive fibrotic stroma in which both pseudo-glandular structures and compact nests of abnormally differentiated tumor cells are embedded, in different proportions and with different mutual relationships in space. This complexity and the heterogeneity of the tumor component have hindered the development of a broadly accepted, clinically actionable classification of PDACs, either on a morphological or a molecular basis. Here, we discuss evidence suggesting that such heterogeneity can to a large extent, albeit not exclusively, be traced back to two main classes of PDAC cells that commonly coexist in the same tumor: cells that maintained their ability to differentiate toward endodermal, mucin-producing epithelia and epithelial cells unable to form glandular structures and instead characterized by various levels of squamous differentiation and the expression of mesenchymal lineage genes. The underlying gene regulatory networks and how they are controlled by distinct transcription factors, as well as the practical implications of these two different populations of tumor cells, are discussed.


Subject(s)
Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Transcription, Genetic/genetics , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Differentiation/genetics , Epithelial Cells/pathology , Epithelium/pathology , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , Humans , Transcription Factors/genetics
5.
Nat Struct Mol Biol ; 28(4): 337-346, 2021 04.
Article in English | MEDLINE | ID: mdl-33767452

ABSTRACT

Interactions between the splicing machinery and RNA polymerase II increase protein-coding gene transcription. Similarly, exons and splicing signals of enhancer-generated long noncoding RNAs (elncRNAs) augment enhancer activity. However, elncRNAs are inefficiently spliced, suggesting that, compared with protein-coding genes, they contain qualitatively different exons with a limited ability to drive splicing. We show here that the inefficiently spliced first exons of elncRNAs as well as promoter-antisense long noncoding RNAs (pa-lncRNAs) in human and mouse cells trigger a transcription termination checkpoint that requires WDR82, an RNA polymerase II-binding protein, and its RNA-binding partner of previously unknown function, ZC3H4. We propose that the first exons of elncRNAs and pa-lncRNAs are an intrinsic component of a regulatory mechanism that, on the one hand, maximizes the activity of these cis-regulatory elements by recruiting the splicing machinery and, on the other, contains elements that suppress pervasive extragenic transcription.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , RNA Polymerase II/ultrastructure , RNA, Long Noncoding/genetics , Transcription, Genetic , Alternative Splicing/genetics , Animals , Chromosomal Proteins, Non-Histone/ultrastructure , DNA-Binding Proteins/ultrastructure , Exons/genetics , Humans , Mice , Promoter Regions, Genetic/genetics , RNA Polymerase II/genetics , RNA Splicing/genetics , RNA, Antisense/genetics , RNA, Antisense/ultrastructure , RNA, Long Noncoding/ultrastructure , RNA, Messenger/genetics , Regulatory Sequences, Nucleic Acid/genetics
6.
Dev Cell ; 55(4): 398-412.e7, 2020 11 23.
Article in English | MEDLINE | ID: mdl-32997974

ABSTRACT

Many tumors of endodermal origin are composed of highly secretory cancer cells that must adapt endoplasmic reticulum (ER) activity to enable proper folding of secreted proteins and prevent ER stress. We found that pancreatic ductal adenocarcinomas (PDACs) overexpress the myelin regulatory factor (MYRF), an ER membrane-associated transcription factor (TF) released by self-cleavage. MYRF was expressed in the well-differentiated secretory cancer cells, but not in the poorly differentiated quasi-mesenchymal cells that coexist in the same tumor. MYRF expression was controlled by the epithelial identity TF HNF1B, and it acted to fine-tune the expression of genes encoding highly glycosylated, cysteine-rich secretory proteins, thus preventing ER overload. MYRF-deficient PDAC cells showed signs of ER stress, impaired proliferation, and an inability to form spheroids in vitro, while in vivo they generated highly secretory but poorly proliferating and hypocellular tumors. These data indicate a role of MYRF in the control of ER homeostasis in highly secretory PDAC cells.


Subject(s)
Endoplasmic Reticulum/metabolism , Homeostasis , Membrane Proteins/metabolism , Pancreatic Neoplasms/metabolism , Transcription Factors/metabolism , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation , Chromatin/metabolism , DNA, Neoplasm/metabolism , Endoplasmic Reticulum/ultrastructure , Endoplasmic Reticulum Stress/genetics , Gene Expression Regulation, Neoplastic , Humans , Membrane Proteins/genetics , Neoplasm Grading , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/ultrastructure , Protein Binding , Transcription Factors/genetics
7.
PLoS Genet ; 15(10): e1008408, 2019 10.
Article in English | MEDLINE | ID: mdl-31626629

ABSTRACT

Satellite cells (SCs) are muscle stem cells that remain quiescent during homeostasis and are activated in response to acute muscle damage or in chronic degenerative conditions such as Duchenne Muscular Dystrophy. The activity of SCs is supported by specialized cells which either reside in the muscle or are recruited in regenerating skeletal muscles, such as for instance macrophages (MΦs). By using a dystrophic mouse model of transient MΦ depletion, we describe a shift in identity of muscle stem cells dependent on the crosstalk between MΦs and SCs. Indeed MΦ depletion determines adipogenic conversion of SCs and exhaustion of the SC pool leading to an exacerbated dystrophic phenotype. The reported data could also provide new insights into therapeutic approaches targeting inflammation in dystrophic muscles.


Subject(s)
Cell Differentiation/genetics , Macrophages/metabolism , Muscular Dystrophy, Duchenne/genetics , Regeneration/genetics , Animals , Cell Lineage/genetics , Disease Models, Animal , Dystrophin/genetics , Humans , Macrophages/pathology , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Myoblasts/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/pathology
8.
EMBO J ; 38(20): e102161, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31531882

ABSTRACT

Differentiation of normal and tumor cells is controlled by regulatory networks enforced by lineage-determining transcription factors (TFs). Among them, TFs such as FOXA1/2 bind naïve chromatin and induce its accessibility, thus establishing new gene regulatory networks. Pancreatic ductal adenocarcinoma (PDAC) is characterized by the coexistence of well- and poorly differentiated cells at all stages of disease. How the transcriptional networks determining such massive cellular heterogeneity are established remains to be determined. We found that FOXA2, a TF controlling pancreas specification, broadly contributed to the cis-regulatory networks of PDACs. Despite being expressed in both well- and poorly differentiated PDAC cells, FOXA2 displayed extensively different genomic distributions and controlled distinct gene expression programs. Grade-specific functions of FOXA2 depended on its partnership with TFs whose expression varied depending on the differentiation grade. These data suggest that FOXA2 contributes to the regulatory networks of heterogeneous PDAC cells via interactions with alternative partner TFs.


Subject(s)
Cell Differentiation , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 1-beta/metabolism , Hepatocyte Nuclear Factor 3-beta/metabolism , Homeodomain Proteins/metabolism , Pancreatic Neoplasms/pathology , Regulatory Elements, Transcriptional , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Movement , Cell Proliferation , Gene Regulatory Networks , Hepatocyte Nuclear Factor 1-beta/genetics , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Homeodomain Proteins/genetics , Humans , Neoplasm Grading , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Tumor Cells, Cultured
9.
Cell ; 173(5): 1150-1164.e14, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29706544

ABSTRACT

Tandem repeats (TRs) are generated by DNA replication errors and retain a high level of instability, which in principle would make them unsuitable for integration into gene regulatory networks. However, the appearance of DNA sequence motifs recognized by transcription factors may turn TRs into functional cis-regulatory elements, thus favoring their stabilization in genomes. Here, we show that, in human cells, the transcriptional repressor ZEB1, which promotes the maintenance of mesenchymal features largely by suppressing epithelial genes and microRNAs, occupies TRs harboring dozens of copies of its DNA-binding motif within genomic loci relevant for maintenance of epithelial identity. The deletion of one such TR caused quasi-mesenchymal cancer cells to reacquire epithelial features, partially recapitulating the effects of ZEB1 gene deletion. These data demonstrate that the high density of identical motifs in TRs can make them suitable platforms for recruitment of transcriptional repressors, thus promoting their exaptation into pre-existing cis-regulatory networks.


Subject(s)
Tandem Repeat Sequences/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Adult , Animals , Base Sequence , Cell Line, Tumor , Chromatin Immunoprecipitation , Female , Gene Expression , Humans , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , Mouth Mucosa/metabolism , Polymorphism, Single Nucleotide , Protein Binding , Transcription Factors/metabolism , Zinc Finger E-box-Binding Homeobox 1/deficiency , Zinc Finger E-box-Binding Homeobox 1/genetics
10.
J Cell Physiol ; 233(4): 3152-3163, 2018 04.
Article in English | MEDLINE | ID: mdl-28816361

ABSTRACT

mSEL-1L is a highly conserved ER-resident type I protein, involved in the degradation of misfolded peptides through the ubiquitin-proteasome system (UPS), a pathway known to control the plasticity of the vascular smooth muscle cells (VSMC) phenotype and survival. In this article, we demonstrate that mSEL-1L deficiency interferes with the murine embryonic vascular network, showing particular irregularities in the intracranic and intersomitic neurovascular units and in the cerebral capillary microcirculation. During murine embryogenesis, mSEL-1L is expressed in cerebral areas known to harbor progenitor neural cells, while in the adult brain the protein is specifically restricted to the stem cell niches, co-localizing with Sox2 and Nestin. Null mice are characterized by important defects in the development of telenchephalic regions, revealing conspicuous aberration in neural stem cell lineage commitment. Moreover, mSEL-1L depletion in vitro and in vivo appears to affect the harmonic differentiation of the NSCs, by negatively influencing the corticogenesis processes. Overall, the data presented suggests that the drastic phenotypic characteristics exhibited in mSEL-1L null mice can, in part, be explained by the negative influence it plays on Notch1 signaling pathway.


Subject(s)
Cell Lineage , Neovascularization, Physiologic , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Proteins/metabolism , Animals , Brain/growth & development , Brain/metabolism , Cell Proliferation , Cell Self Renewal , Genome , Intracellular Signaling Peptides and Proteins , Mice, Knockout , Receptors, Notch/metabolism , Transcriptome/genetics
11.
Cell Rep ; 20(6): 1295-1306, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28793255

ABSTRACT

The development and function of epithelia depend on the establishment and maintenance of cell-cell adhesion and intercellular junctions, which operate as mechanosensor hubs for the transduction of biochemical signals regulating cell proliferation, differentiation, survival, and regeneration. Here, we show that αE-catenin, a key component of adherens junctions, functions as a positive regulator of pancreatic islet cell lineage differentiation by repressing the sonic hedgehog pathway (SHH). Thus, deletion of αE-catenin in multipotent pancreatic progenitors resulted in (1) loss of adherens junctions, (2) constitutive activation of SHH, (3) decrease in islet cell lineage differentiation, and (4) accumulation of immature Sox9+ progenitors. Pharmacological blockade of SHH signaling in pancreatic organ cultures and in vivo rescued this defect, allowing αE-catenin-null Sox9+ pancreatic progenitors to differentiate into endocrine cells. The results uncover crucial functions of αE-catenin in pancreatic islet development and harbor significant implications for the design of ß cell replacement and regeneration therapies in diabetes.


Subject(s)
Cell Differentiation , Cell Lineage , Islets of Langerhans/metabolism , alpha Catenin/metabolism , Adherens Junctions , Animals , Female , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Islets of Langerhans/growth & development , Islets of Langerhans/ultrastructure , Male , Mice , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , alpha Catenin/genetics
12.
Cancer Discov ; 6(6): 650-63, 2016 06.
Article in English | MEDLINE | ID: mdl-27179036

ABSTRACT

UNLABELLED: The identification of genes maintaining cancer growth is critical to our understanding of tumorigenesis. We report the first in vivo genetic screen of patient-derived tumors, using metastatic melanomas and targeting 236 chromatin genes by expression of specific shRNA libraries. Our screens revealed unprecedented numerosity of genes indispensable for tumor growth (∼50% of tested genes) and unexpected functional heterogeneity among patients (<15% in common). Notably, these genes were not activated by somatic mutations in the same patients and are therefore distinguished from mutated cancer driver genes. We analyzed underlying molecular mechanisms of one of the identified genes, the Histone-lysine N-methyltransferase KMT2D, and showed that it promotes tumorigenesis by dysregulating a subset of transcriptional enhancers and target genes involved in cell migration. The assembly of enhancer genomic patterns by activated KMT2D was highly patient-specific, regardless of the identity of transcriptional targets, suggesting that KMT2D might be activated by distinct upstream signaling pathways. SIGNIFICANCE: Drug targeting of biologically relevant cancer-associated mutations is considered a critical strategy to control cancer growth. Our functional in vivo genetic screens of patient-derived tumors showed unprecedented numerosity and interpatient heterogeneity of genes that are essential for tumor growth, but not mutated, suggesting that multiple, patient-specific signaling pathways are activated in tumors. Cancer Discov; 6(6); 650-63. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 561.


Subject(s)
Cell Transformation, Neoplastic/genetics , Genetic Association Studies , Genetic Testing , Neoplasms/diagnosis , Neoplasms/genetics , Phenotype , Animals , Cell Line, Tumor , Chromatin Immunoprecipitation , Computational Biology/methods , DNA-Binding Proteins/metabolism , Disease Models, Animal , Enhancer Elements, Genetic , Epigenesis, Genetic , Epigenomics/methods , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Heterografts , High-Throughput Nucleotide Sequencing , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Neoplasm Metastasis , Neoplasm Proteins/metabolism , Protein Binding , RNA, Small Interfering/genetics , Reproducibility of Results
13.
EMBO J ; 35(6): 595-617, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26769127

ABSTRACT

The histological grade of carcinomas describes the ability of tumor cells to organize in differentiated epithelial structures and has prognostic and therapeutic impact. Here, we show that differential usage of the genomic repertoire of transcriptional enhancers leads to grade-specific gene expression programs in human pancreatic ductal adenocarcinoma (PDAC). By integrating gene expression profiling, epigenomic footprinting, and loss-of-function experiments in PDAC cell lines of different grade, we identified the repertoires of enhancers specific to high- and low-grade PDACs and the cognate set of transcription factors acting to maintain their activity. Among the candidate regulators of PDAC differentiation, KLF5 was selectively expressed in pre-neoplastic lesions and low-grade primary PDACs and cell lines, where it maintained the acetylation of grade-specific enhancers, the expression of epithelial genes such as keratins and mucins, and the ability to organize glandular epithelia in xenografts. The identification of the transcription factors controlling differentiation in PDACs will help clarify the molecular bases of its heterogeneity and progression.


Subject(s)
Adenocarcinoma/pathology , Carcinoma, Pancreatic Ductal/pathology , Gene Expression Regulation , Cell Line, Tumor , Epigenesis, Genetic , Gene Expression Profiling , Genetic Markers , Humans , Transcription Factors/biosynthesis , Transcription Factors/genetics
15.
PLoS One ; 8(11): e79458, 2013.
Article in English | MEDLINE | ID: mdl-24324549

ABSTRACT

SEL1L, a component of the endoplasmic reticulum associated degradation (ERAD) pathway, has been reported to regulate the (i) differentiation of the pancreatic endocrine and exocrine tissue during the second transition of mouse embryonic development, (ii) neural stem cell self-renewal and lineage commitment and (iii) cell cycle progression through regulation of genes related to cell-matrix interaction. Here we show that in the pancreas the expression of SEL1L is developmentally regulated, such that it is readily detected in developing islet cells and in nascent acinar clusters adjacent to basement membranes, and becomes progressively restricted to the islets of Langherans in post-natal life. This peculiar expression pattern and the presence of two inverse RGD motifs in the fibronectin type II domain of SEL1L protein indicate a possible interaction with cell adhesion molecules to regulate islets architecture. Co-immunoprecipitation studies revealed SEL1L and ß1-integrin interaction and, down-modulation of SEL1L in pancreatic ß-cells, negatively influences both cell adhesion on selected matrix components and cell proliferation likely due to altered ERK signaling. Furthermore, the absence of SEL1L protein strongly inhibits glucose-stimulated insulin secretion in isolated mouse pancreatic islets unveiling an important role of SEL1L in insulin trafficking. This phenotype can be rescued by the ectopic expression of the ß1-integrin subunit confirming the close interaction of these two proteins in regulating the cross-talk between extracellular matrix and insulin signalling to create a favourable micro-environment for ß-cell development and function.


Subject(s)
Proteins/metabolism , Signal Transduction/genetics , Animals , Blotting, Western , Cell Adhesion/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Fluorescent Antibody Technique , Glucose/pharmacology , Humans , Immunohistochemistry , Immunoprecipitation , Insulin/metabolism , Insulin Secretion , Integrin beta1/metabolism , Intracellular Signaling Peptides and Proteins , Mice , Pancreas/drug effects , Pancreas/metabolism , Protein Binding , Proteins/genetics , Signal Transduction/drug effects
16.
Development ; 140(16): 3360-72, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23863477

ABSTRACT

Development of the endocrine compartment of the pancreas, as represented by the islets of Langerhans, occurs through a series of highly regulated events encompassing branching of the pancreatic epithelium, delamination and differentiation of islet progenitors from ductal domains, followed by expansion and three-dimensional organization into islet clusters. Cellular interactions with the extracellular matrix (ECM) mediated by receptors of the integrin family are postulated to regulate key functions in these processes. Yet, specific events regulated by these receptors in the developing pancreas remain unknown. Here, we show that ablation of the ß1 integrin gene in developing pancreatic ß-cells reduces their ability to expand during embryonic life, during the first week of postnatal life, and thereafter. Mice lacking ß1 integrin in insulin-producing cells exhibit a dramatic reduction of the number of ß-cells to only ∼18% of wild-type levels. Despite the significant reduction in ß-cell mass, these mutant mice are not diabetic. A thorough phenotypic analysis of ß-cells lacking ß1 integrin revealed a normal expression repertoire of ß-cell markers, normal architectural organization within islet clusters, and a normal ultrastructure. Global gene expression analysis revealed that ablation of this ECM receptor in ß-cells inhibits the expression of genes regulating cell cycle progression. Collectively, our results demonstrate that ß1 integrin receptors function as crucial positive regulators of ß-cell expansion.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Developmental , Insulin-Secreting Cells/metabolism , Integrin beta1/metabolism , Animals , Cell Adhesion , Cell Count , Cell Cycle , Cell Differentiation , Cell Membrane/metabolism , Cell Shape , Cells, Cultured , Embryo, Mammalian/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Insulin/genetics , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/ultrastructure , Integrin beta1/genetics , Mice , Mice, Knockout , Microscopy, Electron, Transmission , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphorylation , Promoter Regions, Genetic
17.
J Histochem Cytochem ; 61(2): 116-24, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23172795

ABSTRACT

Tissue microarray (TMA) and cell microarray (CMA) are two powerful techniques that allow for the immunophenotypical characterization of hundreds of samples simultaneously. In particular, the CMA approach is particularly useful for immunophenotyping new stem cell lines (e.g., cardiac, neural, mesenchymal) using conventional markers, as well as for testing the specificity and the efficacy of newly developed antibodies. We propose the use of a tissue arrayer not only to perform protein expression profiling by immunohistochemistry but also to carry out molecular genetics studies. In fact, starting with several tissues or cell lines, it is possible to obtain the complete signature of each sample, describing the protein, mRNA and microRNA expression, and DNA mutations, or eventually to analyze the epigenetic processes that control protein regulation. Here we show the results obtained using the Galileo CK4500 TMA platform.


Subject(s)
Gene Expression Profiling/methods , Nucleic Acids/genetics , Tissue Array Analysis/methods , Animals , Cell Line , Cell Line, Tumor , Gene Expression , Humans , Immunohistochemistry/methods , Immunophenotyping/methods , Intracellular Signaling Peptides and Proteins , Mice , Nucleic Acids/isolation & purification , Proteins/analysis , Proteins/genetics
18.
J Cell Physiol ; 227(1): 14-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21412777

ABSTRACT

The use of human stem cells in biomedical research projects is increasing steadily and the number of cells that are being derived develops at a remarkable pace. However, stem cells around the world are vastly different in their provenance, programming, and potentials. Furthermore, knowledge on the actual number of cell types, their derivation, availability, and characteristics is rather sparse. Usually, "colleague-supply" avenues constantly furnish cells to laboratories around the world without ensuring their correct identity, characterization, and quality. These parameters are critical if the cells will be eventually used in toxicology studies and drug discovery. Here, we outline some basic principles in establishing a stem cell-specific bank.


Subject(s)
Stem Cells , Tissue Banks/trends , Humans , Tissue Banks/organization & administration
19.
PLoS One ; 6(7): e22750, 2011.
Article in English | MEDLINE | ID: mdl-21829502

ABSTRACT

BACKGROUND: Netrins have been extensively studied in the developing central nervous system as pathfinding guidance cues, and more recently in non-neural tissues where they mediate cell adhesion, migration and differentiation. Netrin-4, a distant relative of Netrins 1-3, has been proposed to affect cell fate determination in developing epithelia, though receptors mediating these functions have yet to be identified. METHODOLOGY/PRINCIPAL FINDINGS: Using human embryonic pancreatic cells as a model of developing epithelium, here we report that Netrin-4 is abundantly expressed in vascular endothelial cells and pancreatic ductal cells, and supports epithelial cell adhesion through integrins α2ß1 and α3ß1. Interestingly, we find that Netrin-4 recognition by embryonic pancreatic cells through integrins α2ß1 and α3ß1 promotes insulin and glucagon gene expression. In addition, full genome microarray analysis revealed that fetal pancreatic cell adhesion to Netrin-4 causes a prominent down-regulation of cyclins and up-regulation of negative regulators of the cell cycle. Consistent with these results, a number of other genes whose activities have been linked to developmental decisions and/or cellular differentiation are up-regulated. CONCLUSIONS/SIGNIFICANCE: Given the recognized function of blood vessels in epithelial tissue morphogenesis, our results provide a mechanism by which endothelial-derived Netrin-4 may function as a pro-differentiation cue for adjacent developing pancreatic cell populations expressing adhesion receptors α2ß1 and α3ß1 integrins.


Subject(s)
Cell Adhesion , Cell Differentiation , Endothelium, Vascular/metabolism , Epithelial Cells/metabolism , Glucagon/metabolism , Insulin/metabolism , Integrin alpha2beta1/metabolism , Integrin alpha3beta1/metabolism , Nerve Growth Factors/metabolism , Pancreatic Ducts/cytology , Biomarkers/metabolism , Blotting, Western , Cell Movement , Cell Proliferation , Endothelium, Vascular/cytology , Fetus/cytology , Fetus/metabolism , Fluorescent Antibody Technique , Gene Expression Profiling , Gene Expression Regulation, Developmental , Glucagon/genetics , Humans , Immunoenzyme Techniques , Immunoprecipitation , Insulin/genetics , Nerve Growth Factors/genetics , Netrins , Oligonucleotide Array Sequence Analysis , Pancreatic Ducts/metabolism , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
20.
J Biol Chem ; 286(21): 18708-19, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21454627

ABSTRACT

Murine SEL-1L (mSEL-1L) is a key component of the endoplasmic reticulum-associated degradation pathway. It is essential during development as revealed by the multi-organ dysfunction and in uterus lethality occurring in homozygous mSEL-1L-deficient mice. Here we show that mSEL-1L is highly expressed in pluripotent embryonic stem cells and multipotent neural stem cells (NSCs) but silenced in all mature neural derivatives (i.e. astrocytes, oligodendrocytes, and neurons) by mmu-miR-183. NSCs derived from homozygous mSEL-1L-deficient embryos (mSEL-1L(-/-) NSCs) fail to proliferate in vitro, show a drastic reduction of the Notch effector HES-5, and reveal a significant down-modulation of the early neural progenitor markers PAX-6 and OLIG-2, when compared with the wild type (mSEL-1L(+/+) NSCs) counterpart. Furthermore, these cells are almost completely deprived of the neural marker Nestin, display a significant decrease of SOX-2 expression, and rapidly undergo premature astrocytic commitment and apoptosis. The data suggest severe self-renewal defects occurring in these cells probably mediated by misregulation of the Notch signaling. The results reported here denote mSEL-1L as a primitive marker with a possible involvement in the regulation of neural progenitor stemness maintenance and lineage determination.


Subject(s)
Antigens, Differentiation/metabolism , Apoptosis/physiology , Cell Lineage/physiology , Multipotent Stem Cells/metabolism , Neural Stem Cells/metabolism , Proteins/metabolism , Animals , Antigens, Differentiation/genetics , Astrocytes/cytology , Astrocytes/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line , Eye Proteins/genetics , Eye Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Intracellular Signaling Peptides and Proteins , Mice , Mice, Transgenic , MicroRNAs/genetics , MicroRNAs/metabolism , Multipotent Stem Cells/cytology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nestin , Neural Stem Cells/cytology , Oligodendrocyte Transcription Factor 2 , PAX6 Transcription Factor , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , Proteins/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...