Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
2.
Res Sq ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38826306

ABSTRACT

Background: Neurodegenerative tauopathies may progress based on seeding by pathological tau assemblies, whereby an aggregate is released from one cell, gains entry to an adjacent or connected cell, and serves as a specific template for its own replication in the cytoplasm. In vitro seeding reactions typically take days, yet seeding into the complex cytoplasmic milieu happens within hours, implicating a machinery with unknown players that controls this process in the acute phase. Methods: We used proximity labeling to identify factors that control seed amplification within 5h of seed exposure. We fused split-APEX2 to the C-terminus of tau repeat domain (RD) to reconstitute peroxidase activity 5h after seeded intracellular tau aggregation. Valosin containing protein (VCP/p97) was the top hit. VCP harbors dominant mutations that underlie two neurodegenerative diseases, multisystem proteinopathy and vacuolar tauopathy, but its mechanistic role is unclear. We used immortalized cells and human neurons to study the effects of VCP on tau seeding. We exposed cells to fibrils or brain homogenates in cell culture media and measured effects on uptake and induction of intracellular tau aggregation following various genetic and chemical manipulations of VCP. Results: VCP knockdown reduced tau seeding. Chemical inhibitors had opposing effects on aggregation in HEK293T tau biosensor cells and human neurons alike: ML-240 increased seeding efficiency, whereas NMS-873 decreased it. The inhibitors were effective only when administered within 8h of seed exposure, indicating a role for VCP early in seed processing. We screened 30 VCP co-factors in HEK293T biosensor cells by genetic knockout or knockdown. Reduction of ATXN3, NSFL1C, UBE4B, NGLY1, and OTUB1 decreased tau seeding, as did NPLOC4, which also uniquely increased soluble tau levels. By contrast, reduction of FAF2 increased tau seeding. Conclusions: Divergent effects on tau seeding of chemical inhibitors and cofactor reduction indicate that VCP regulates this process. This is consistent with a dedicated cytoplasmic processing complex based on VCP that directs seeds acutely towards degradation vs. amplification.

3.
Structure ; 32(6): 662-678.e8, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38508190

ABSTRACT

J-domain protein (JDP) molecular chaperones have emerged as central players that maintain a healthy proteome. The diverse members of the JDP family function as monomers/dimers and a small subset assemble into micron-sized oligomers. The oligomeric JDP members have eluded structural characterization due to their low-complexity, intrinsically disordered middle domains. This in turn, obscures the biological significance of these larger oligomers in protein folding processes. Here, we identified a short, aromatic motif within DNAJB8 that drives self-assembly through π-π stacking and determined its X-ray structure. We show that mutations in the motif disrupt DNAJB8 oligomerization in vitro and in cells. DNAJB8 variants that are unable to assemble bind to misfolded tau seeds more specifically and retain capacity to reduce protein aggregation in vitro and in cells. We propose a new model for DNAJB8 function in which the sequences in the low-complexity domains play distinct roles in assembly and substrate activity.


Subject(s)
HSP40 Heat-Shock Proteins , Protein Multimerization , Humans , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/chemistry , HSP40 Heat-Shock Proteins/genetics , Models, Molecular , Amino Acid Motifs , Crystallography, X-Ray , Protein Binding , tau Proteins/metabolism , tau Proteins/chemistry , tau Proteins/genetics , Molecular Chaperones/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Mutation , Protein Folding
4.
J Chem Inf Model ; 64(2): 425-434, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38191997

ABSTRACT

Discovering ligands for amyloid fibrils, such as those formed by the tau protein, is an area of great current interest. In recent structures, ligands bind in stacks in the tau fibrils to reflect the rotational and translational symmetry of the fibril itself; in these structures, the ligands make few interactions with the protein but interact extensively with each other. To exploit this symmetry and stacking, we developed SymDOCK, a method to dock molecules that follow the protein's symmetry. For each prospective ligand pose, we apply the symmetry operation of the fibril to generate a self-interacting and fibril-interacting stack, checking that doing so will not cause a clash between the original molecule and its image. Absent a clash, we retain that pose and add the ligand-ligand van der Waals energy to the ligand's docking score (here using DOCK3.8). We can check these geometries and energies using an implementation of ANI, a neural-network-based quantum-mechanical evaluation of the ligand stacking energies. In retrospective calculations, symmetry docking can reproduce the poses of three tau PET tracers whose structures have been determined. More convincingly, in a prospective study, SymDOCK predicted the structure of the PET tracer MK-6240 bound in a symmetrical stack to AD PHF tau before that structure was determined; the docked pose was used to determine how MK-6240 fit the cryo-EM density. In proof-of-concept studies, SymDOCK enriched known ligands over property-matched decoys in retrospective screens without sacrificing docking speed and can address large library screens that seek new symmetrical stackers. Future applications of this approach will be considered.


Subject(s)
Proteins , Prospective Studies , Ligands , Retrospective Studies , Proteins/chemistry , Molecular Docking Simulation , Protein Binding , Binding Sites
5.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-36945632

ABSTRACT

J-domain protein (JDP) molecular chaperones have emerged as central players that maintain a healthy proteome. The diverse members of the JDP family function as monomers/dimers and a small subset assemble into micron-sized oligomers. The oligomeric JDP members have eluded structural characterization due to their low-complexity, intrinsically disordered middle domains. This in turn, obscures the biological significance of these larger oligomers in protein folding processes. Here, we identified a short, aromatic motif within DNAJB8, that drives self-assembly through pi-pi stacking and determined its X-ray structure. We show that mutations in the motif disrupt DNAJB8 oligomerization in vitro and in cells. DNAJB8 variants that are unable to assemble bind to misfolded tau seeds more specifically and retain capacity to reduce protein aggregation in vitro and in cells. We propose a new model for DNAJB8 function in which the sequences in the low-complexity domains play distinct roles in assembly and substrate activity.

6.
J Biol Chem ; 300(1): 105545, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072056

ABSTRACT

Neurodegenerative tauopathies such as Alzheimer's disease (AD) are caused by brain accumulation of tau assemblies. Evidence suggests tau functions as a prion, and cells and animals can efficiently propagate unique, transmissible tau pathologies. This suggests a dedicated cellular replication machinery, potentially reflecting a normal physiologic function for tau seeds. Consequently, we hypothesized that healthy control brains would contain seeding activity. We have recently developed a novel monoclonal antibody (MD3.1) specific for tau seeds. We used this antibody to immunopurify tau from the parietal and cerebellar cortices of 19 healthy subjects without any neuropathology, ranging 19 to 65 years. We detected seeding in lysates from the parietal cortex, but not in the cerebellum. We also detected no seeding in brain homogenates from wildtype or human tau knockin mice, suggesting that cellular/genetic context dictates development of seed-competent tau. Seeding did not correlate with subject age or brain tau levels. We confirmed our essential findings using an orthogonal assay, real-time quaking-induced conversion, which amplifies tau seeds in vitro. Dot blot analyses revealed no AT8 immunoreactivity above background levels in parietal and cerebellar extracts and ∼1/100 of that present in AD. Based on binding to a panel of antibodies, the conformational characteristics of control seeds differed from AD, suggesting a unique underlying assembly, or structural ensemble. Tau's ability to adopt self-replicating conformations under nonpathogenic conditions may reflect a normal function that goes awry in disease states.


Subject(s)
Alzheimer Disease , Tauopathies , Animals , Humans , Mice , Alzheimer Disease/metabolism , Brain/metabolism , Cerebellum/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/metabolism , Male , Female , Young Adult , Adult , Middle Aged , Aged
7.
Cytoskeleton (Hoboken) ; 81(1): 83-88, 2024 01.
Article in English | MEDLINE | ID: mdl-37950616

ABSTRACT

Tau was originally identified as a microtubule associated protein, and subsequently recognized to constitute the fibrillar assemblies found in Alzheimer disease and related neurodegenerative tauopathies. Point mutations in the microtubule associated protein tau (MAPT) gene cause dominantly inherited tauopathies, and most predispose it to aggregate. This indicates tau aggregation underlies pathogenesis of tauopathies. Our work has suggested that tau functions as a prion, forming unique intracellular pathological assemblies that subsequently move to other cells, inducing further aggregation that underlies disease progression. Remarkably, in simple cells tau forms stably propagating aggregates of distinct conformation, termed strains. Each strain induces a unique and, in some cases, transmissible, neuropathological phenotype upon inoculation into a mouse model. After binding heparan sulfate proteoglycans on the plasma membrane, tau assemblies enter cells via macropinocytosis. From within a vesicle, if not trafficked to the endolysosomal system, tau subsequently enters the cytoplasm, where it becomes a template for its own replication, apparently after processing by valosin containing protein. The smallest seed unit is a stable monomer, which suggests that initial folding events in tau presage subsequent pathological aggregation. The study of tau prions has raised important questions about basic cell biological processes that underlie their replication and propagation, with implications for therapy of tauopathies.


Subject(s)
Prions , Tauopathies , Mice , Animals , tau Proteins/genetics , tau Proteins/chemistry , Prions/genetics , Prions/chemistry , Prions/metabolism , Tauopathies/genetics , Tauopathies/metabolism , Tauopathies/pathology , Cell Membrane/metabolism , Cytoskeleton/metabolism , Brain/metabolism
8.
bioRxiv ; 2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37961414

ABSTRACT

Discovering ligands for amyloid fibrils, such as those formed by the tau protein, is an area of much current interest. In recent structures, ligands bind in stacks in the tau fibrils to reflect the rotational and translational symmetry of the fibril itself; in these structures the ligands make few interactions with the protein but interact extensively with each other. To exploit this symmetry and stacking, we developed SymDOCK, a method to dock molecules that follow the protein's symmetry. For each prospective ligand pose, we apply the symmetry operation of the fibril to generate a self-interacting and fibril-interacting stack, checking that doing so will not cause a clash between the original molecule and its image. Absent a clash, we retain that pose and add the ligand-ligand van der Waals energy to the ligand's docking score (here using DOCK3.8). We can check these geometries and energies using an implementation of ANI, a neural network-based quantum-mechanical evaluation of the ligand stacking energies. In retrospective calculations, symmetry docking can reproduce the poses of three tau PET tracers whose structures have been determined. More convincingly, in a prospective study SymDOCK predicted the structure of the PET tracer MK-6240 bound in a symmetrical stack to AD PHF tau before that structure was determined; the docked pose was used to determine how MK-6240 fit the cryo-EM density. In proof-of-concept studies, SymDOCK enriched known ligands over property-matched decoys in retrospective screens without sacrificing docking speed, and can address large library screens that seek new symmetrical stackers. Future applications of this approach will be considered.

9.
bioRxiv ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37790438

ABSTRACT

Positron Emission Tomography (PET) ligands have advanced Alzheimer's disease (AD) diagnosis and treatment. Using autoradiography and cryo-EM, we identified AD brain tissue with elevated tau burden, purified filaments, and determined the structure of second-generation high avidity PET ligand MK-6240 at 2.31 Å resolution, which bound at a 1:1 ratio within the cleft of tau paired-helical filament (PHF), engaging with glutamine 351, lysine K353, and isoleucine 360. This information elucidates the basis of MK-6240 PET in quantifying PHF deposits in AD and may facilitate the structure-based design of superior ligands against tau amyloids.

10.
Sci Adv ; 9(43): eadh3457, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37889966

ABSTRACT

α-Synuclein (aSyn) aggregation underlies neurodegenerative synucleinopathies. aSyn seeds are proposed to replicate and propagate neuronal pathology like prions. Seeding of aSyn can be recapitulated in cellular systems of aSyn aggregation; however, the mechanism of aSyn seeding and its regulation are not well understood. We developed an mEos-based aSyn seeding assay and performed saturation mutagenesis to identify with single-residue resolution positive and negative regulators of aSyn aggregation. We not only found the core regions that govern aSyn aggregation but also identified mutants outside of the core that enhance aggregation. We identified local structure within the N terminus of aSyn that hinders the fibrillization propensity of its aggregation-prone core. Based on the screen, we designed a minimal aSyn fragment that shows a ~4-fold enhancement in seeding activity and enabled discrimination of synucleinopathies. Our study expands the basic knowledge of aSyn aggregation and advances the design of cellular systems of aSyn aggregation to diagnose synucleinopathies based on protein conformation.


Subject(s)
Synucleinopathies , alpha-Synuclein , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Synucleinopathies/metabolism , Mutagenesis , Protein Conformation , Neurons/metabolism
11.
J Biol Chem ; 299(11): 105252, 2023 11.
Article in English | MEDLINE | ID: mdl-37714465

ABSTRACT

Neurodegenerative tauopathies are caused by the transition of tau protein from a monomer to a toxic aggregate. They include Alzheimer disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick disease (PiD). We have previously proposed that tau monomer exists in two conformational ensembles: an inert form (Mi), which does not self-assemble, and seed-competent form (Ms), which self-assembles and templates ordered assembly growth. We proposed that cis/trans isomerization of tau at P301, the site of dominant disease-associated S/L missense mutations, might underlie the transition of wild-type tau to a seed-competent state. Consequently, we created monoclonal antibodies using non-natural antigens consisting of fluorinated proline (P∗) at the analogous P270 in repeat 1 (R1), biased toward the trans-configuration at either the R1/R2 (TENLKHQP∗GGGKVQIINKK) or the R1/R3 (TENLKHQP∗GGGKVQIVYK) interfaces. Two antibodies, MD2.2 and MD3.1, efficiently immunoprecipitated soluble seeds from AD and PSP but not CBD or PiD brain samples. The antibodies efficiently stained brain samples of AD, PSP, and PiD, but not CBD. They did not immunoprecipitate or immunostain tau from the control brain. Creation of potent anti-seed antibodies based on the trans-proline epitope implicates local unfolding around P301 in pathogenesis. MD2.2 and MD3.1 may also be useful for therapy and diagnosis.


Subject(s)
Tauopathies , Humans , Alzheimer Disease/metabolism , Antibodies, Monoclonal/metabolism , Brain/metabolism , Epitopes/metabolism , Pick Disease of the Brain/metabolism , Pick Disease of the Brain/pathology , Proline/metabolism , tau Proteins/metabolism , Tauopathies/metabolism
12.
bioRxiv ; 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37693404

ABSTRACT

Background: Neurodegenerative tauopathies may progress based on seeding by pathological tau assemblies, whereby an aggregate is released from one cell, gains entry to an adjacent or connected cell, and serves as a specific template for its own replication in the cytoplasm. In vitro seeding reactions typically take days, yet seeding into the complex cytoplasmic milieu can happen within hours. A cellular machinery might regulate this process, but potential players are unknown. Methods: We used proximity labeling to identify factors that control seed amplification. We fused split-APEX2 to the C-terminus of tau repeat domain (RD) to reconstitute peroxidase activity upon seeded intracellular tau aggregation. We identified valosin containing protein (VCP/p97) 5h after seeding. Mutations in VCP underlie two neurodegenerative diseases, multisystem proteinopathy and vacuolar tauopathy, but its mechanistic role is unclear. We utilized tau biosensors, a cellular model for tau aggregation, to study the effects of VCP on tau seeding. Results: VCP knockdown reduced tau seeding. However, distinct chemical inhibitors of VCP and the proteasome had opposing effects on aggregation, but only when given <8h of seed exposure. ML-240 increased seeding efficiency ~40x, whereas NMS-873 decreased seeding efficiency by 50%, and MG132 increased seeding ~10x. We screened VCP co-factors in HEK293 biosensor cells by genetic knockout or knockdown. Reduction of ATXN3, NSFL1C, UBE4B, NGLY1, and OTUB1 decreased tau seeding, as did NPLOC4, which also uniquely increased soluble tau levels. Reduction of FAF2 and UBXN6 increased tau seeding. Conclusions: VCP uses distinct cofactors to determine seed replication efficiency, consistent with a dedicated cytoplasmic processing complex that directs seeds towards dissolution vs. amplification.

13.
Elife ; 122023 06 30.
Article in English | MEDLINE | ID: mdl-37387473

ABSTRACT

Neurodegenerative tauopathies are caused by accumulation of toxic tau protein assemblies. This appears to involve template-based seeding events, whereby tau monomer changes conformation and is recruited to a growing aggregate. Several large families of chaperone proteins, including Hsp70s and J domain proteins (JDPs), cooperate to regulate the folding of intracellular proteins such as tau, but the factors that coordinate this activity are not well known. The JDP DnaJC7 binds tau and reduces its intracellular aggregation. However, it is unknown whether this is specific to DnaJC7 or if other JDPs might be similarly involved. We used proteomics within a cell model to determine that DnaJC7 co-purified with insoluble tau and colocalized with intracellular aggregates. We individually knocked out every possible JDP and tested the effect on intracellular aggregation and seeding. DnaJC7 knockout decreased aggregate clearance and increased intracellular tau seeding. This depended on the ability of the J domain (JD) of DnaJC7 to stimulate Hsp70 ATPase activity, as JD mutations that block this interaction abrogated the protective activity. Disease-associated mutations in the JD and substrate binding site of DnaJC7 also abolished its protective activity. DnaJC7 thus specifically regulates tau aggregation in cooperation with Hsp70.


Subject(s)
Tauopathies , tau Proteins , Humans , tau Proteins/metabolism , Tauopathies/metabolism , HSP70 Heat-Shock Proteins/genetics
14.
bioRxiv ; 2023 May 25.
Article in English | MEDLINE | ID: mdl-37292658

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder that primarily affects elderly individuals, and is characterized by hallmark neuronal pathologies including extracellular amyloid-ß (Aß) plaque deposition, intracellular tau tangles, and neuronal death. However, recapitulating these age-associated neuronal pathologies in patient-derived neurons has remained a significant challenge, especially for late-onset AD (LOAD), the most common form of the disorder. Here, we applied the high efficiency microRNA-mediated direct neuronal reprogramming of fibroblasts from AD patients to generate cortical neurons in three-dimensional (3D) Matrigel and self-assembled neuronal spheroids. Our findings indicate that neurons and spheroids reprogrammed from both autosomal dominant AD (ADAD) and LOAD patients exhibited AD-like phenotypes linked to neurons, including extracellular Aß deposition, dystrophic neurites with hyperphosphorylated, K63-ubiquitin-positive, seed-competent tau, and spontaneous neuronal death in culture. Moreover, treatment with ß- or γ-secretase inhibitors in LOAD patient-derived neurons and spheroids before Aß deposit formation significantly lowered Aß deposition, as well as tauopathy and neurodegeneration. However, the same treatment after the cells already formed Aß deposits only had a mild effect. Additionally, inhibiting the synthesis of age-associated retrotransposable elements (RTEs) by treating LOAD neurons and spheroids with the reverse transcriptase inhibitor, lamivudine, alleviated AD neuropathology. Overall, our results demonstrate that direct neuronal reprogramming of AD patient fibroblasts in a 3D environment can capture age-related neuropathology and reflect the interplay between Aß accumulation, tau dysregulation, and neuronal death. Moreover, miRNA-based 3D neuronal conversion provides a human-relevant AD model that can be used to identify compounds that can potentially ameliorate AD-associated pathologies and neurodegeneration.

15.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37293074

ABSTRACT

Neurodegenerative tauopathies are hypothesized to propagate via brain networks. This is uncertain because we have lacked precise network resolution of pathology. We therefore developed whole-brain staining methods with anti-p-tau nanobodies and imaged in 3D PS19 tauopathy mice, which have pan-neuronal expression of full-length human tau containing the P301S mutation. We analyzed patterns of p-tau deposition across established brain networks at multiple ages, testing the relationship between structural connectivity and patterns of progressive pathology. We identified core regions with early tau deposition, and used network propagation modeling to determine the link between tau pathology and connectivity strength. We discovered a bias towards retrograde network-based propagation of tau. This novel approach establishes a fundamental role for brain networks in tau propagation, with implications for human disease.

16.
bioRxiv ; 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36993367

ABSTRACT

Neurodegenerative tauopathies are caused by accumulation of toxic tau protein assemblies. This appears to involve template-based seeding events, whereby tau monomer changes conformation and is recruited to a growing aggregate. Several large families of chaperone proteins, including Hsp70s and J domain proteins (JDPs) cooperate to regulate the folding of intracellular proteins such as tau, but the factors that coordinate this activity are not well known. The JDP DnaJC7 binds tau and reduces its intracellular aggregation. However, it is unknown whether this is specific to DnaJC7 or if other JDPs might be similarly involved. We used proteomics within a cell model to determine that DnaJC7 co-purified with insoluble tau and colocalized with intracellular aggregates. We individually knocked out every possible JDP and tested the effect on intracellular aggregation and seeding. DnaJC7 knockout decreased aggregate clearance and increased intracellular tau seeding. This depended on the ability of the J domain (JD) of DnaJC7 to bind to Hsp70, as JD mutations that block binding to Hsp70 abrogated the protective activity. Disease-associated mutations in the JD and substrate binding site of DnaJC7 also abrogated its protective activity. DnaJC7 thus specifically regulates tau aggregation in cooperation with Hsp70.

17.
Nat Commun ; 14(1): 1625, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959205

ABSTRACT

Amyloid deposition of the microtubule-associated protein tau is associated with neurodegenerative diseases. In frontotemporal dementia with abnormal tau (FTD-tau), missense mutations in tau enhance its aggregation propensity. Here we describe the structural mechanism for how an FTD-tau S320F mutation drives spontaneous aggregation, integrating data from in vitro, in silico and cellular experiments. We find that S320F stabilizes a local hydrophobic cluster which allosterically exposes the 306VQIVYK311 amyloid motif; identify a suppressor mutation that destabilizes S320F-based hydrophobic clustering reversing the phenotype in vitro and in cells; and computationally engineer spontaneously aggregating tau sequences through optimizing nonpolar clusters surrounding the S320 position. We uncover a mechanism for regulating tau aggregation which balances local nonpolar contacts with long-range interactions that sequester amyloid motifs. Understanding this process may permit control of tau aggregation into structural polymorphs to aid the design of reagents targeting disease-specific tau conformations.


Subject(s)
Frontotemporal Dementia , Humans , Frontotemporal Dementia/genetics , Mutation , tau Proteins/metabolism , Mutation, Missense , Amyloid/genetics , Amyloidogenic Proteins/genetics
18.
Nat Commun ; 14(1): 560, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36732333

ABSTRACT

Amyloid-like aggregates of the microtubule-associated protein Tau are associated with several neurodegenerative disorders including Alzheimer's disease. The existence of cellular machinery for the removal of such aggregates has remained unclear, as specialized disaggregase chaperones are thought to be absent in mammalian cells. Here we show in cell culture and in neurons that the hexameric ATPase valosin-containing protein (VCP) is recruited to ubiquitylated Tau fibrils, resulting in their efficient disaggregation. Aggregate clearance depends on the functional cooperation of VCP with heat shock 70 kDa protein (Hsp70) and the ubiquitin-proteasome machinery. While inhibition of VCP activity stabilizes large Tau aggregates, disaggregation by VCP generates seeding-active Tau species as byproduct. These findings identify VCP as a core component of the machinery for the removal of neurodegenerative disease aggregates and suggest that its activity can be associated with enhanced aggregate spreading in tauopathies.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Animals , Humans , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism , Neurodegenerative Diseases/metabolism , Molecular Chaperones/metabolism , Heat-Shock Proteins/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Mammals/metabolism
19.
Nat Commun ; 14(1): 895, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797278

ABSTRACT

Cryogenic electron microscopy has revealed unprecedented molecular insight into the conformations of ß-sheet-rich protein amyloids linked to neurodegenerative diseases. It remains unknown how a protein can adopt a diversity of folds and form multiple distinct fibrillar structures. Here we develop an in silico alanine scan method to estimate the relative energetic contribution of each amino acid in an amyloid assembly. We apply our method to twenty-seven ex vivo and in vitro fibril structural polymorphs of the microtubule-associated protein tau. We uncover networks of energetically important interactions involving amyloid-forming motifs that stabilize the different fibril folds. We evaluate our predictions in cellular and in vitro aggregation assays. Using a machine learning approach, we classify the structures based on residue energetics to identify distinguishing and unifying features. Our energetic profiling suggests that minimal sequence elements control the stability of tau fibrils, allowing future design of protein sequences that fold into unique structures.


Subject(s)
Amyloid , tau Proteins , Amyloid/metabolism , tau Proteins/metabolism , Amino Acid Sequence , Amyloidogenic Proteins , Protein Conformation, beta-Strand , Molecular Conformation , Amyloid beta-Peptides/metabolism
20.
Acta Neuropathol Commun ; 10(1): 146, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36221144

ABSTRACT

Relapsing remitting multiple sclerosis (MS) is an inflammatory demyelinating disorder of the central nervous system that in many cases leads to progressive MS, a neurodegenerative disease. Progressive MS is untreatable and relentless, and its cause is unknown. Prior studies of MS have documented neuronal accumulation of phosphorylated tau protein, which characterizes another heterogeneous group of neurogenerative disorders, the tauopathies. Known causes of tauopathy are myriad, and include point mutations within the tau gene, amyloid beta accumulation, repeated head trauma, and viral infection. We and others have proposed that tau has essential features of a prion. It forms intracellular assemblies that can exit a cell, enter a secondary cell, and serve as templates for their own replication in a process termed "seeding." We have previously developed specialized "biosensor" cell systems to detect and quantify tau seeds in brain tissues. We hypothesized that progressive MS is a tauopathy, potentially triggered by inflammation. We tested for and detected tau seeding in frozen brain tissue of 6/8 subjects with multiple sclerosis. We then evaluated multiple brain regions from a single subject for whom we had detailed clinical history. We observed seeding outside of MS plaques that was enriched by immunopurification with two anti-tau antibodies (HJ8.5 and MD3.1). Immunohistochemistry with AT8 and MD3.1 confirmed prior reports of tau accumulation in MS. Although larger studies are required, our data suggest that progressive MS may be considered a secondary tauopathy.


Subject(s)
Multiple Sclerosis , Neurodegenerative Diseases , Prions , Tauopathies , Amyloid beta-Peptides/metabolism , Brain/metabolism , Humans , Multiple Sclerosis/metabolism , Neurodegenerative Diseases/metabolism , Prions/metabolism , Tauopathies/metabolism , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...