Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters











Publication year range
1.
iScience ; 27(6): 109929, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38799566

ABSTRACT

Tuning of protein homeostasis through mobilization of the unfolded protein response (UPR) is key to the capacity of pancreatic beta cells to cope with variable demand for insulin. Here, we asked how insulin-degrading enzyme (IDE) affects beta cell adaptation to metabolic and immune stress. C57BL/6 and autoimmune non-obese diabetic (NOD) mice lacking IDE were exposed to proteotoxic, metabolic, and immune stress. IDE deficiency induced a low-level UPR with islet hypertrophy at the steady state, rapamycin-sensitive beta cell proliferation enhanced by proteotoxic stress, and beta cell decompensation upon high-fat feeding. IDE deficiency also enhanced the UPR triggered by proteotoxic stress in human EndoC-ßH1 cells. In Ide-/- NOD mice, islet inflammation specifically induced regenerating islet-derived protein 2, a protein attenuating autoimmune inflammation. These findings establish a role of IDE in islet cell protein homeostasis, demonstrate how its absence induces metabolic decompensation despite beta cell proliferation, and UPR-independent islet regeneration in the presence of inflammation.

2.
bioRxiv ; 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37503145

ABSTRACT

Appropriate tuning of protein homeostasis through mobilization of the unfolded protein response (UPR) is key to the capacity of pancreatic beta cells to cope with highly variable demand for insulin synthesis. An efficient UPR ensures a sufficient beta cell mass and secretory output but can also affect beta cell resilience to autoimmune aggression. The factors regulating protein homeostasis in the face of metabolic and immune challenges are insufficiently understood. We examined beta cell adaptation to stress in mice deficient for insulin-degrading enzyme (IDE), a ubiquitous protease with high affinity for insulin and genetic association with type 2 diabetes. IDE deficiency induced a low-level UPR in both C57BL/6 and autoimmune non-obese diabetic (NOD) mice, associated with rapamycin-sensitive beta cell proliferation strongly enhanced by proteotoxic stress. Moreover, in NOD mice, IDE deficiency protected from spontaneous diabetes and triggered an additional independent pathway, conditional on the presence of islet inflammation but inhibited by proteotoxic stress, highlighted by strong upregulation of regenerating islet-derived protein 2, a protein attenuating autoimmune inflammation. Our findings establish a key role of IDE in islet cell protein homeostasis, identify a link between low-level UPR and proliferation, and reveal an UPR-independent anti-inflammatory islet cell response uncovered in the absence of IDE of potential interest in autoimmune diabetes.

3.
Biomed Pharmacother ; 163: 114813, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37150031

ABSTRACT

BACKGROUND: Lipin-1 deficiency is a life-threatening disease that causes severe rhabdomyolysis (RM) and chronic symptoms associated with oxidative stress. In the absence of treatment, Hydroxychloroquine sulfate (HCQ) was administered to patients off label use on a compassionate basis in order to improve their physical conditions. METHODS: Eleven patients with LPIN1 mutations were treated with HCQ. Clinical and biological efficacy and tolerance were assessed, including pain and quality of life, physical capacities, cardiopulmonary parameters, creatine kinase levels and plasma proinflammatory cytokines. To explore a dose-dependent effect of HCQ, primary myoblasts from 4 patients were incubated with various HCQ concentrations in growth medium (GM) or during starvation (EBSS medium) to investigate autophagy and oxidative stress. FINDINGS: Under HCQ treatment, patient physical capacities improved. Abnormal cardiac function and peripheral muscle adaptation to exercise were normalized. However, two patients who had the highest mean blood HCQ concentrations experienced RM. We hypothesized that HCQ exerts deleterious effects at high concentrations by blocking autophagy, and beneficial effects on oxidative stress at low concentrations. We confirmed in primary myoblasts from 4 patients that high in vitro HCQ concentration (10 µM) but not low concentration (1 µM and 0.1 µM) induced autophagy blockage by modifying endolysosomal pH. Low HCQ concentration (1 µM) prevented reactive oxygen species (ROS) and oxidized DNA accumulation in myoblasts during starvation. INTERPRETATION: HCQ improves the condition of patients with lipin-1 deficiency, but at low concentrations. In vitro, 1 µM HCQ decreases oxidative stress in myoblasts whereas higher concentrations have a deleterious effect by blocking autophagy.


Subject(s)
Hydroxychloroquine , Quality of Life , Humans , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Cytokines , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Phosphatidate Phosphatase/genetics
4.
EBioMedicine ; 91: 104567, 2023 May.
Article in English | MEDLINE | ID: mdl-37062177

ABSTRACT

BACKGROUND: In preclinical models of Type 1 Diabetes (T1D) the integrity of the gut barrier (GB) is instrumental to avoid dysregulated crosstalk between the commensal microbiota and immune cells and to prevent autoimmunity. The GB is composed of the intestinal epithelial barrier (IEB) and of the mucus layer containing mucins and antimicrobial peptides (AMPs) that are crucial to maintain immune tolerance. In preclinical models of T1D the alterations of the GB primarily affect the mucus layer. In human T1D increased gut permeability and IEB damage have been demonstrated but the integrity of the mucus layer was never assessed. METHODS: We evaluated GB integrity by measuring serological markers of IEB damage (serological levels of zonulin) and bacterial translocation such as lipopolysaccharide binding protein (LBP) and myeloid differentiation protein 2 (MD2), and mRNA expression of tight junction proteins, mucins and AMPs in intestinal tissue of T1D patients and healthy controls (HC). Simultaneously, we performed immunological profiling on intestinal tissue and 16S rRNA analysis on the mucus-associated gut microbiota (MAGM). FINDINGS: Our data show a GB damage with mucus layer alterations and reduced mRNA expression of several mucins (MUC2, MUC12, MUC13, MUC15, MUC20, MUC21) and AMPs (HD4 and HD5) in T1D patients. Mucus layer alterations correlated with reduced relative abundance of short chain fatty acids (SCFA)-producing bacteria such as Bifidobacterium dentium, Clostridium butyricum and Roseburia intestinalis that regulate mucin expression and intestinal immune homeostasis. In T1D patients we also found intestinal immune dysregulation with higher percentages of effector T cells such as T helper (Th) 1, Th17 and TNF-α+ T cells. INTERPRETATION: Our data show that mucus layer alterations are present in T1D subjects and associated with dysbiosis and immune dysregulation. FUNDING: Research Grants from the Juvenile Diabetes Foundation (Grant 1-INO-2018-640-A-N to MF and 2-SRA-2019-680-S-B to JD) and from the Italian Ministry of Health (Grant RF19-12370721 to MF).


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Intestinal Mucosa/metabolism , Dysbiosis/metabolism , RNA, Ribosomal, 16S/metabolism , Mucins/metabolism , Mucus/metabolism , RNA, Messenger/metabolism
5.
Gastroenterology ; 162(4): 1288-1302.e16, 2022 04.
Article in English | MEDLINE | ID: mdl-34973295

ABSTRACT

BACKGROUND & AIMS: Alteration of the gut microbiota is implicated in the development of autoimmune type 1 diabetes (T1D), as shown in humans and the nonobese diabetic (NOD) mouse model. However, how gut dysbiosis arises and promotes the autoimmune response remains an open question. We investigated whether early events affecting the intestinal homeostasis in newborn NOD mice may explain the development of the autoimmune response in the adult pancreas. METHODS: We profiled the transcriptome and the microbiota in the colon between newborn NOD mice and nonautoimmune strains. We identified a seminal defect in the intestinal homeostasis of newborn NOD mice and deciphered the mechanism linking this defect to the diabetogenic response in the adult. RESULTS: We determined that the cathelicidin-related antimicrobial peptide (CRAMP) expression was defective in the colon of newborn NOD mice, allowing inducing dysbiosis. Dysbiosis stimulated the colonic epithelial cells to produce type I interferons that pathologically imprinted the local neonatal immune system. This pathological immune imprinting later promoted the pancreatic autoimmune response in the adult and the development of diabetes. Increasing colonic CRAMP expression in newborn NOD mice by means of local CRAMP treatment or CRAMP-expressing probiotic restored colonic homeostasis and halted the diabetogenic response, preventing autoimmune diabetes. CONCLUSIONS: We identified whether a defective colonic expression in the CRAMP antimicrobial peptide induces dysbiosis, contributing to autoimmunity in the pancreas. Hence, the manipulation of intestinal antimicrobial peptides may be considered a relevant therapeutic approach to prevent autoimmune diabetes in at-risk children.


Subject(s)
Diabetes Mellitus, Type 1 , Gastrointestinal Microbiome , Animals , Antimicrobial Cationic Peptides , Antimicrobial Peptides , Autoimmunity , Diabetes Mellitus, Type 1/prevention & control , Dysbiosis/pathology , Gastrointestinal Microbiome/physiology , Humans , Mice , Mice, Inbred NOD , Pancreas/pathology , Cathelicidins
6.
EMBO Mol Med ; 14(2): e15409, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34907647

ABSTRACT

Multidrug resistance is one of the major public health issues the world is facing today. However, the World Health Organization (WHO) revealed recently that there has been little progress in the development of new antibiotics to tackle drug-resistant infections. By mining the bacterial genome database, Zhu et al, in the last issue of EMBO Molecular Medicine, report a defensin expressed by human oral actinomyces, actinomycesin, and characterize its anti-infectious capacity (Zhu et al, 2021). They demonstrate the safety and efficacy of this bacterial antimicrobial peptide (AMP) against various bacterial strains, describe its mode of action, and validate its use as systemic drug therapy against bacterial infections in mice. This study highlights human oral bacteria as a source of antimicrobial agents that need to be considered in the future to fight multidrug-resistant bacteria.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Animals , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Genome, Bacterial/drug effects , Mice , Microbial Sensitivity Tests
7.
EMBO Mol Med ; 13(8): e14059, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34125490

ABSTRACT

In the gut, cathelicidin-related antimicrobial peptide (CRAMP) has been largely described for its anti-infective activities. With an increasing recognition of its immune regulatory effects in extra-intestinal diseases, the role of CRAMP in gluten-induced small intestinal enteropathy celiac disease remains unknown. This study aimed to investigate the unexplored role of CRAMP in celiac disease. By applying a mouse model of gluten-induced enteropathy (GIE) recapitulating small intestinal enteropathy of celiac disease, we observed defective CRAMP production in duodenal epithelium during GIE. CRAMP-deficient mice were susceptible to the development of GIE. Exogenous CRAMP corrected gliadin-triggered epithelial dysfunction and promoted regulatory immune responses at the intestinal mucosa. Additionally, GIE-associated gut dysbiosis with enriched Pseudomonas aeruginosa and production of the protease LasB contributed to defective intestinal CRAMP production. These results highlight microbiota-CRAMP axis in the modulation of barrier function and immune responses in GIE. Hence, modulating CRAMP may represent a therapeutic strategy for celiac disease.


Subject(s)
Celiac Disease , Gastrointestinal Microbiome , Animals , Antimicrobial Cationic Peptides , Glutens , Immunity , Intestinal Mucosa , Mice , Cathelicidins
8.
Microorganisms ; 8(11)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33113928

ABSTRACT

Cryptosporidium parvum causes diarrhea in infants under 5 years, in immunosuppressed individuals or in young ruminants. This parasite infects the apical side of ileal epithelial cells where it develops itself and induces inflammation. Antimicrobial peptides (AMPs) are part of the innate immune response, playing a major role in the control of the acute phase of C. parvum infection in neonates. Intestinal AMP production in neonates is characterized by high expressions of Cathelicidin Related Antimicrobial Peptide (CRAMP), the unique cathelicidin in mice known to fight bacterial infections. In this study, we investigated the role of CRAMP during cryptosporidiosis in neonates. We demonstrated that sporozoites are sensitive to CRAMP antimicrobial activity. However, during C. parvum infection the intestinal expression of CRAMP was significantly and selectively reduced, while other AMPs were upregulated. Moreover, despite high CRAMP expression in the intestine of neonates at homeostasis, the depletion of CRAMP did not worsen C. parvum infection. This result might be explained by the rapid downregulation of CRAMP induced by infection. However, the exogenous administration of CRAMP dampened the parasite burden in neonates. Taken together these results suggest that C. parvum impairs the production of CRAMP to subvert the host response, and highlight exogenous cathelicidin supplements as a potential treatment strategy.

9.
Front Immunol ; 11: 2077, 2020.
Article in English | MEDLINE | ID: mdl-32983158

ABSTRACT

Autoimmune diseases (AiDs) are characterized by the destruction of host tissues by the host immune system. The etiology of AiDs is complex, with the implication of multiple genetic defects and various environmental factors (pathogens, antibiotic use, pollutants, stress, and diet). The interaction between these two compartments results in the rupture of tolerance against self-antigens and the unwanted activation of the immune system. Thanks to animal models, the immunopathology of many AiDs is well described, with the implication of both the innate and adaptive immune systems. This progress toward the understanding of AiDs led to several therapies tested in patients. However, the results from these clinical trials have not been satisfactory, from reversing the course of AiDs to preventing them. The need for a cure has prompted many investigators to explore alternative aspects in the immunopathology of these diseases. Among these new aspects, the role of antimicrobial host defense peptides (AMPs) is growing. Indeed, beyond their antimicrobial activity, AMPs are potent immunomodulatory molecules and consequently are implicated in the development of numerous AiDs. Importantly, according to the disease considered, AMPs appear to play a dual role in autoimmunity with either anti- or pro-inflammatory abilities. Here, we aimed to summarize the current knowledge about the role of AMPs in the development of AiDs and attempt to provide some hypotheses explaining their dual role. Definitely, a complete understanding of this aspect is mandatory before the design of AMP-based therapies against AiDs.


Subject(s)
Autoimmunity , Immunomodulation , Pore Forming Cytotoxic Proteins/metabolism , Animals , Antimicrobial Cationic Peptides/metabolism , Autoimmune Diseases/diagnosis , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Biomarkers , Defensins/metabolism , Disease Susceptibility , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Cathelicidins
10.
Br J Pharmacol ; 177(12): 2726-2742, 2020 06.
Article in English | MEDLINE | ID: mdl-31976546

ABSTRACT

BACKGROUND AND PURPOSE: Despite recent advances in understanding its pathophysiology, treatment of acute kidney injury (AKI) remains a major unmet medical need, and novel therapeutic strategies are needed. Cathelicidin-related antimicrobial peptide (CRAMP) with immunomodulatory properties has an emerging role in various disease contexts. Here, we aimed to investigate the role of CRAMP and its underlying mechanisms in AKI. EXPERIMENTAL APPROACH: The human homologue LL-37 and CRAMP were measured in blood samples of AKI patients and in experimental AKI mice respectively. Experimental AKI was induced in wild-type and CRAMP-deficient (Cnlp-/- ) mice by ischaemia/reperfusion (I/R). Therapeutic evaluation of CRAMP was performed with exogenous CRAMP (5 mg·kg-1 , i.p.) treatment. KEY RESULTS: Cathelicidin expression was inversely related to clinical signs in patients and down-regulated in renal I/R-induced injury in mice. Cnlp-/- mice exhibited exacerbated I/R-induced renal dysfunction, aggravated inflammatory responses and apoptosis. Moreover, over-activation of the NLRP3 inflammasome in Cnlp-/- mice was associated with I/R-induced renal injury. Exogenous CRAMP treatment markedly attenuated I/R-induced renal dysfunction, inflammatory response and apoptosis, correlated with modulation of immune cell infiltration and phenotype. Consistent with Cnlp-/- mouse data, CRAMP administration suppressed renal I/R-induced NLRP3 inflammasome activation, and its renal protective effects were mimicked by a specific NLRP3 inhibitor CY-09. The reno-protective and NLRP3 inhibitory effects of CRAMP required the EGF receptor. CONCLUSION AND IMPLICATIONS: Our results suggest that CRAMP acts as a novel immunomodulatory mediator of AKI and modulation of CRAMP may represent a potential therapeutic strategy.


Subject(s)
Acute Kidney Injury , Antimicrobial Cationic Peptides , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Animals , Apoptosis , Humans , Ischemia , Kidney , Mice , Mice, Inbred C57BL , Mice, Knockout , Reperfusion , Cathelicidins
SELECTION OF CITATIONS
SEARCH DETAIL