Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 66(5): 581-596.e6, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28552615

ABSTRACT

The action of DNA topoisomerase II (Top2) creates transient DNA breaks that are normally concealed inside Top2-DNA covalent complexes. Top2 poisons, including ubiquitously present natural compounds and clinically used anti-cancer drugs, trap Top2-DNA complexes. Here, we show that cells actively prevent Top2 degradation to avoid the exposure of concealed DNA breaks. A genome-wide screen revealed that fission yeast cells lacking Rrp2, an Snf2-family DNA translocase, are strongly sensitive to Top2 poisons. Loss of Rrp2 enhances SUMOylation-dependent ubiquitination and degradation of Top2, which in turn increases DNA damage at sites where Top2-DNA complexes are trapped. Rrp2 possesses SUMO-binding ability and prevents excessive Top2 degradation by competing against the SUMO-targeted ubiquitin ligase (STUbL) for SUMO chain binding and by displacing SUMOylated Top2 from DNA. The budding yeast homolog of Rrp2, Uls1, plays a similar role, indicating that this genome protection mechanism is widely employed, a finding with implications for cancer treatment.


Subject(s)
DNA Damage , DNA Topoisomerases, Type II/metabolism , DNA, Fungal/metabolism , DNA-Binding Proteins/metabolism , Genome, Fungal , Genomic Instability , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/enzymology , Sumoylation , DNA Damage/drug effects , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Topoisomerases, Type II/genetics , DNA, Fungal/drug effects , DNA, Fungal/genetics , DNA-Binding Proteins/genetics , Drug Resistance , Etoposide/pharmacology , Genome, Fungal/drug effects , Genomic Instability/drug effects , Mutation , Protein Binding , Protein Interaction Domains and Motifs , Proteolysis , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Schizosaccharomyces/drug effects , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Topoisomerase II Inhibitors/pharmacology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...