Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37893645

ABSTRACT

The integration of green technologies such as microwave- and enzyme-assisted extraction (MEAE) has been shown to improve the extraction efficiency of bioactive compounds while reducing processing time and costs. MEAE using tannase alone (MEAE-Tan), or in combination with cellulase and pectinase (MEAE-Tan-Cel-Pec), was optimized to produce enriched phenolic and antioxidant extracts from olive pomace. The individual and integrated impact of enzyme concentration, temperature, and pomace/water ratio were determined using a central composite rotatable design. Optimal extraction conditions for MEAE-Tan (60 °C, 15 min, 2.34% of enzyme (w/w), and 1:15 pomace/water ratio) and MEAE-Tan-Cel-Pec (46 °C, 15 min, 2% of enzymes (w/w), in the proportion of 1:1:1, and 1:20 pomace/water ratio) resulted in extracts containing 7110.6 and 2938.25 mg GAE/kg, respectively. The antioxidant activity of the extracts was correlated with phenolic acid release, which was enzyme-dependent, as determined with HPLC-DAD analysis. Enzyme selection had a significant impact on the phenolic profile of extracts, with tannase releasing high concentrations of chlorogenic acid and the combined use of enzymes releasing high concentrations of hydroxytyrosol and chlorogenic and ferulic acids. The novelty of this study relies on the integration and optimization of two green technologies (microwave- and enzyme-assisted extraction) to improve the extraction efficiency of bioactive phenolics from olive pomace while reducing processing time and costs. While these techniques have been evaluated isolated, the benefits of using both processing strategies simultaneously remain largely unexplored. This study demonstrates the effectiveness of the integration and processing optimization of two environmentally friendly technologies as a promising alternative to treat agro-industrial byproducts.

3.
Sci Rep ; 10(1): 10873, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32616827

ABSTRACT

The almond cake is a protein-rich residue generated by the mechanical expression of the almond oil. The effects of the aqueous (AEP) and enzyme-assisted aqueous extraction processes (EAEP) on the biological properties of the almond cake protein were evaluated. Total phenolic content (TPC), antioxidant capacity, inhibitory effects against crucial enzymes related to metabolic syndrome, antimicrobial potential, and in vitro protein digestibility profile were assessed. EAEP provided the best results for antioxidant capacity by both ORAC (397.2 µmol TE per g) and ABTS (650.5 µmol TE per g) methods and also showed a high (~ 98%) potential for α-glucosidase inhibition. The AEP resulted in protein extracts with the highest lipase inhibition (~ 70%) in a dose-dependent way. Enzymatic kinetic analyses revealed that EAEP generated uncompetitive inhibitors against α-glucosidase, while EAEP, AEP, and HEX-AEP (used as control) generated the same kind of inhibitors against lipase. No protein extract was effective against any of the bacteria strains tested at antimicrobial assays. An in silico theoretical hydrolysis of amandin subunits corroborated with the results found for antioxidant capacity, enzyme inhibitory experiments, and antimicrobial activity. Digestibility results indicated that the digestive proteases used were efficient in hydrolyzing almond proteins, regardless of the extraction applied and that HEX-AEP presented the highest digestibility (85%). In summary, EAEP and AEP skim proteins have the potential to be used as a nutraceutical ingredient. The biological properties observed in these extracts could help mitigate the development of metabolic syndrome where EAEP and AEP skim proteins could be potentially used as a prophylactic therapy for diabetes and obesity, respectively.


Subject(s)
Antioxidants/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Plant Extracts/pharmacology , Plant Proteins/pharmacology , Prunus dulcis/metabolism , alpha-Glucosidases/chemistry , Metabolic Syndrome/prevention & control , Prunus dulcis/chemistry
4.
Appl Biochem Biotechnol ; 192(3): 734-750, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32535816

ABSTRACT

Soybean is one of the most important commodities in the world, being applied in feed crops and food, pharmaceutical industries in different ways. Soy is rich in isoflavones that in aglycone forms have exhibited significant anti-obesity and anti-lipogenic effects. Obesity is a global problem as several diseases have been related to this worldwide epidemic. The aim of this work was to verify the effect of free and immobilized ß-glucosidase, testing Lentikats, and sol-gel as carriers. Moreover, we wanted to examine if the different types of hydrolysis would generate extracts with distinct biological activity concerning lipid accumulation, PPAR-α regulation, and TNF-α, IL-6, and IL-10 concentrations using in vitro assays. Our results show that all formulations of ß-glucosidase could hydrolyze soy isoflavones. Thus, after 24 h of incubation, daidzein content increased 2.6-, 10.8-, and 12.2-fold; and genistein content increased 11.7, 11.4, and 11.4 times with the use of free enzyme, Lentikats®, and sol-gel immobilized enzyme, respectively. Moreover, both methodologies for enzyme immobilization led to promising forms of biocatalysts for application in the production of soy extracts rich in isoflavones aglycones, which are expected to bring about health benefits. A mild lipogenic effect was observed for some concentrations of extracts, as well as a slight inhibition in PPAR-α expression, although no significant differences were noticeable in the cytokines TNF-α, IL-10, and IL-6 as compared with the control.


Subject(s)
Enzymes, Immobilized/metabolism , Glycine max/chemistry , Iridoids/analysis , Iridoids/pharmacology , Isoflavones/chemistry , Lipid Metabolism/drug effects , beta-Glucosidase/metabolism , Animals , Enzymes, Immobilized/chemistry , Hydrolysis , Interleukin-10/metabolism , Interleukin-6/metabolism , Mice , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism , beta-Glucosidase/chemistry
5.
Anal Chim Acta ; 1040: 1-18, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30327098

ABSTRACT

Microextractions have become an attractive class of techniques for metabolomics. The most popular technique is solid-phase microextraction that revolutionized the field of modern sample preparation in the early nineties. Ever since this milestone, microextractions have taken on many principles and formats comprising droplets, fibers, membranes, needles, and blades. Sampling devices may be customized to impart exhaustive or equilibrium-based characteristics to the extraction method. Equilibrium-based approaches may rely on additional methods for calibration, such as diffusion-based or on-fiber kinetic calibration to improve bioanalysis. In addition, microextraction-based methods may enable minimally invasive sampling protocols and measure the average free concentration of analytes in heterogeneous multiphasic biological systems. On-fiber derivatization has evidenced new opportunities for targeted and untargeted analysis in metabolomics. All these advantages have highlighted the potential of microextraction techniques for in vivo and on-site sampling and sample preparation, while many opportunities are still available for laboratory protocols. In this review, we outline and discuss some of the most recent applications using microextractions techniques for comprehensive two-dimensional gas chromatography-based metabolomics, including potential research opportunities.


Subject(s)
Ionic Liquids/metabolism , Metabolomics , Solid Phase Microextraction , Gas Chromatography-Mass Spectrometry , Ionic Liquids/chemistry , Ionic Liquids/isolation & purification
6.
Anal Chem ; 83(4): 1375-80, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21235233

ABSTRACT

The development and illustrative applications of an ambient ionization technique termed Venturi easy ambient sonic-spray ionization (V-EASI) is described. Its dual mode of operation with Venturi self-pumping makes V-EASI applicable to the direct mass spectrometric analysis of both liquid (V(L)-EASI) and solid (V(S)-EASI) samples. V-EASI is simple and easy to assemble, operating solely via the assistance of a sonic stream of nitrogen or air. The sonic gas stream causes two beneficial and integrated effects: (a) the self-pumping of solutions via the Venturi effect and (b) sonic-spray ionization (SSI) of analytes either in solution or resting on solid surfaces. In its liquid mode, V(L)-EASI is applicable to analytes in solution, forming negatively and/or positively charged intact molecular species in a soft fashion with little or no fragmentation. In its solid mode, V(S)-EASI relies on Venturi self-pumping of a proper SSI solvent solution in combination with SSI to form a stream of bipolar charged droplets that bombard the sample surface, causing desorption and ionization of the analyte molecules. As for its precursor technique (EASI), V-EASI generates bipolar droplets with considerably lower average charging, which increases selectivity for ionization with high signal-to-noise ratios and clean spectra dominated by single molecular species with minimal solvent ions. V-EASI also operates in a voltage-, heat-, and radiation-free fashion and is therefore free of thermal, electrical, or discharge interferences.


Subject(s)
Mass Spectrometry/methods , Sound , Amino Acid Sequence , Animals , Cytochromes c/chemistry , Gases/chemistry , Ions , Myoglobin/chemistry , Oligopeptides/chemistry , Organic Chemicals/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL