Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Struct Mol Biol ; 30(12): 1902-1912, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37857822

ABSTRACT

Glutaminase (GLS), which deaminates glutamine to form glutamate, is a mitochondrial tetrameric protein complex. Although inorganic phosphate (Pi) is known to promote GLS filamentation and activation, the molecular basis of this mechanism is unknown. Here we aimed to determine the molecular mechanism of Pi-induced mouse GLS filamentation and its impact on mitochondrial physiology. Single-particle cryogenic electron microscopy revealed an allosteric mechanism in which Pi binding at the tetramer interface and the activation loop is coupled to direct nucleophile activation at the active site. The active conformation is prone to enzyme filamentation. Notably, human GLS filaments form inside tubulated mitochondria following glutamine withdrawal, as shown by in situ cryo-electron tomography of cells thinned by cryo-focused ion beam milling. Mitochondria with GLS filaments exhibit increased protection from mitophagy. We reveal roles of filamentous GLS in mitochondrial morphology and recycling.


Subject(s)
Glutaminase , Mitophagy , Mice , Humans , Animals , Glutaminase/chemistry , Glutaminase/metabolism , Glutamine/metabolism , Mitochondria/metabolism
2.
J Photochem Photobiol B ; 243: 112713, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37086566

ABSTRACT

Ultraviolet C (UVC) light has long been used as a sterilizing agent, primarily through devices that emit at 254 nm. Depending on the dose and duration of exposure, UV 254 nm can cause erythema and photokeratitis and potentially cause skin cancer since it directly modifies nitrogenated nucleic acid bases. Filtered KrCl excimer lamps (emitting mainly at 222 nm) have emerged as safer germicidal tools and have even been proposed as devices to sterilize surgical wounds. All the studies that showed the safety of 222 nm analyzed cell number and viability, erythema generation, epidermal thickening, the formation of genetic lesions such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs) and cancer-inducing potential. Although nucleic acids can absorb and be modified by both UV 254 nm and UV 222 nm equally, compared to UV 254 nm, UV 222 nm is more intensely absorbed by proteins (especially aromatic side chains), causing photooxidation and cross-linking. Here, in addition to analyzing DNA lesion formation, for the first time, we evaluated changes in the proteome and cellular pathways, reactive oxygen species formation, and metalloproteinase (MMP) levels and activity in full-thickness in vitro reconstructed human skin (RHS) exposed to UV 222 nm. We also performed the longest (40 days) in vivo study of UV 222 nm exposure in the HRS/J mouse model at the occupational threshold limit value (TLV) for indirect exposure (25 mJ/cm2) and evaluated overall skin morphology, cellular pathological alterations, CPD and 6-4PP formation and MMP-9 activity. Our study showed that processes related to reactive oxygen species and inflammatory responses were more altered by UV 254 nm than by UV 222 nm. Our chronic in vivo exposure assay using the TLV confirmed that UV 222 nm causes minor damage to the skin. However, alterations in pathways related to skin regeneration raise concerns about direct exposure to UV 222 nm.


Subject(s)
DNA Damage , Nucleic Acids , Mice , Animals , Humans , Reactive Oxygen Species/metabolism , Pyrimidine Dimers/metabolism , Skin/radiation effects , Ultraviolet Rays , Nucleic Acids/metabolism , Erythema
3.
Mol Oncol ; 17(5): 713-717, 2023 05.
Article in English | MEDLINE | ID: mdl-36916500

ABSTRACT

Accuracy and transparency of scientific data are becoming more and more relevant with the increasing concern regarding the evaluation of data reproducibility in many research areas. This concern is also true for quantifying coding and noncoding RNAs, with the remarkable increase in publications reporting RNA profiling and sequencing studies. To address the problem, we propose the following recommendations: (a) accurate documentation of experimental procedures in Materials and methods (and not only in the supplementary information, as many journals have a strict mandate for making Materials and methods as visible as possible in the main text); (b) submission of RT-qPCR raw data for all experiments reported; and (c) adoption of a unified, simple format for submitted RT-qPCR raw data. The Real-time PCR Data Essential Spreadsheet Format (RDES) was created for this purpose.


Subject(s)
RNA , Humans , Reverse Transcriptase Polymerase Chain Reaction , Reproducibility of Results , Real-Time Polymerase Chain Reaction/methods
4.
Photodiagnosis Photodyn Ther ; 39: 103015, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35843562

ABSTRACT

Ultraviolet (UV) light can inactivate SARS-CoV-2. However, the practicality of UV light is limited by the carcinogenic potential of mercury vapor-based UV lamps. Recent advances in the development of krypton chlorine (KrCl) excimer lamps hold promise, as these emit a shorter peak wavelength (222 nm), which is highly absorbed by the skin's stratum corneum and can filter out higher wavelengths. In this sense, UV 222 nm irradiation for the inactivation of virus particles in the air and surfaces is a potentially safer option as a germicidal technology. However, these same physical properties make it harder to reach microbes present in complex solutions, such as saliva, a critical source of SARS-CoV-2 transmission. We provide the first evaluation for using a commercial filtered KrCl excimer light source to inactivate SARS-CoV-2 in saliva spread on a surface. A conventional germicidal lamp (UV 254 nm) was also evaluated under the same condition. Using plaque-forming units (PFU) and Median Tissue Culture Infectious Dose (TCID50) per milliliter we found that 99.99% viral clearance (LD99.99) was obtained with 106.3 mJ/cm2 of UV 222 nm for virus in DMEM and 2417 mJ/cm2 for virus in saliva. Additionally, our results showed that the UV 254 nm had a greater capacity to inactivate the virus in both vehicles. Effective (after discounting light absorption) LD99.99 of UV 222 nm on the virus in saliva was ∼30 times higher than the value obtained with virus in saline solution (PBS), we speculated that saliva might be protecting the virus from surface irradiation in ways other than just by intensity attenuation of UV 222 nm. Due to differences between UV 222/254 nm capacities to interact and be absorbed by molecules in complex solutions, a higher dose of 222 nm will be necessary to reduce viral load in surfaces with contaminated saliva.


Subject(s)
COVID-19 , Photochemotherapy , Disinfection/methods , Humans , Photochemotherapy/methods , SARS-CoV-2 , Saliva , Ultraviolet Rays
5.
Diabetes ; 71(7): 1546-1561, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35377454

ABSTRACT

Obesity is a major concern for global health care systems. Systemic low-grade inflammation in obesity is a major risk factor for insulin resistance. Leptin is an adipokine secreted by the adipose tissue that functions by controlling food intake, leading to satiety. Leptin levels are increased in obesity. Here, we show that leptin enhances the effects of LPS in macrophages, intensifying the production of cytokines, glycolytic rates, and morphological and functional changes in the mitochondria through an mTORC2-dependent, mTORC1-independent mechanism. Leptin also boosts the effects of IL-4 in macrophages, leading to increased oxygen consumption, expression of macrophage markers associated with a tissue repair phenotype, and wound healing. In vivo, hyperleptinemia caused by diet-induced obesity increases the inflammatory response by macrophages. Deletion of leptin receptor and subsequently of leptin signaling in myeloid cells (ObR-/-) is sufficient to improve insulin resistance in obese mice and decrease systemic inflammation. Our results indicate that leptin acts as a systemic nutritional checkpoint to regulate macrophage fitness and contributes to obesity-induced inflammation and insulin resistance. Thus, specific interventions aimed at downstream modulators of leptin signaling may represent new therapeutic targets to treat obesity-induced systemic inflammation.


Subject(s)
Insulin Resistance , Leptin , Adipose Tissue/metabolism , Animals , Inflammation/metabolism , Leptin/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Obesity/metabolism
6.
Metabolites ; 11(2)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673148

ABSTRACT

Bacterial genome sequencing has revealed a vast number of novel biosynthetic gene clusters (BGC) with potential to produce bioactive natural products. However, the biosynthesis of secondary metabolites by bacteria is often silenced under laboratory conditions, limiting the controlled expression of natural products. Here we describe an integrated methodology for the construction and screening of an elicited and pre-fractionated library of marine bacteria. In this pilot study, chemical elicitors were evaluated to mimic the natural environment and to induce the expression of cryptic BGCs in deep-sea bacteria. By integrating high-resolution untargeted metabolomics with cheminformatics analyses, it was possible to visualize, mine, identify and map the chemical and biological space of the elicited bacterial metabolites. The results show that elicited bacterial metabolites correspond to ~45% of the compounds produced under laboratory conditions. In addition, the elicited chemical space is novel (~70% of the elicited compounds) or concentrated in the chemical space of drugs. Fractionation of the crude extracts further evidenced minor compounds (~90% of the collection) and the detection of biological activity. This pilot work pinpoints strategies for constructing and evaluating chemically diverse bacterial natural product libraries towards the identification of novel bacterial metabolites in natural product-based drug discovery pipelines.

7.
Biology (Basel) ; 9(11)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33227948

ABSTRACT

The molecular identity of the mitochondrial pyruvate carrier (MPC) was presented in 2012, forty years after the active transport of cytosolic pyruvate into the mitochondrial matrix was first demonstrated. An impressive amount of in vivo and in vitro studies has since revealed an unexpected interplay between one, two, or even three protein subunits defining different functional MPC assemblies in a metabolic-specific context. These have clear implications in cell homeostasis and disease, and on the development of future therapies. Despite intensive efforts by different research groups using state-of-the-art computational tools and experimental techniques, MPCs' structure-based mechanism remains elusive. Here, we review the current state of knowledge concerning MPCs' molecular structures by examining both earlier and recent studies and presenting novel data to identify the regulatory, structural, and core transport activities to each of the known MPC subunits. We also discuss the potential application of cryogenic electron microscopy (cryo-EM) studies of MPC reconstituted into nanodiscs of synthetic copolymers for solving human MPC2.

8.
Oncogene ; 39(3): 690-702, 2020 01.
Article in English | MEDLINE | ID: mdl-31541193

ABSTRACT

Many types of cancers have a well-established dependence on glutamine metabolism to support survival and growth, a process linked to glutaminase 1 (GLS) isoforms. Conversely, GLS2 variants often have tumor-suppressing activity. Triple-negative (TN) breast cancer (testing negative for estrogen, progesterone, and Her2 receptors) has elevated GLS protein levels and reportedly depends on exogenous glutamine and GLS activity for survival. Despite having high GLS levels, we verified that several breast cancer cells (including TN cells) express endogenous GLS2, defying its role as a bona fide tumor suppressor. Moreover, ectopic GLS2 expression rescued cell proliferation, TCA anaplerosis, redox balance, and mitochondrial function after GLS inhibition by the small molecule currently in clinical trials CB-839 or GLS knockdown of GLS-dependent cell lines. In several cell lines, GLS2 knockdown decreased cell proliferation and glutamine-linked metabolic phenotypes. Strikingly, long-term treatment of TN cells with another GLS-exclusive inhibitor bis-2'-(5-phenylacetamide-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) selected for a drug-resistant population with increased endogenous GLS2 and restored proliferative capacity. GLS2 was linked to enhanced in vitro cell migration and invasion, mesenchymal markers (through the ERK-ZEB1-vimentin axis under certain conditions) and in vivo lung metastasis. Of concern, GLS2 amplification or overexpression is linked to an overall, disease-free and distant metastasis-free worse survival prognosis in breast cancer. Altogether, these data establish an unforeseen role of GLS2 in sustaining tumor proliferation and underlying metastasis in breast cancer and provide an initial framework for exploring GLS2 as a novel therapeutic target.


Subject(s)
Breast Neoplasms/pathology , Carcinogenesis/pathology , Glutaminase/metabolism , Lung Neoplasms/secondary , Adult , Aged , Aged, 80 and over , Benzeneacetamides/pharmacology , Benzeneacetamides/therapeutic use , Breast/pathology , Breast/surgery , Breast Neoplasms/mortality , Breast Neoplasms/therapy , Cell Line, Tumor , Disease-Free Survival , Female , Gene Knockdown Techniques , Glutaminase/antagonists & inhibitors , Humans , Middle Aged , Prognosis , Sulfides/pharmacology , Sulfides/therapeutic use , Thiadiazoles/pharmacology , Thiadiazoles/therapeutic use
9.
J Biol Chem ; 294(24): 9342-9357, 2019 06 14.
Article in English | MEDLINE | ID: mdl-31040181

ABSTRACT

Triple-negative breast cancers (TNBCs) lack progesterone and estrogen receptors and do not have amplified human epidermal growth factor receptor 2, the main therapeutic targets for managing breast cancer. TNBCs have an altered metabolism, including an increased Warburg effect and glutamine dependence, making the glutaminase inhibitor CB-839 therapeutically promising for this tumor type. Accordingly, CB-839 is currently in phase I/II clinical trials. However, not all TNBCs respond to CB-839 treatment, and the tumor resistance mechanism is not yet fully understood. Here we classified cell lines as CB-839-sensitive or -resistant according to their growth responses to CB-839. Compared with sensitive cells, resistant cells were less glutaminolytic and, upon CB-839 treatment, exhibited a smaller decrease in ATP content and less mitochondrial fragmentation, an indicator of poor mitochondrial health. Transcriptional analyses revealed that the expression levels of genes linked to lipid metabolism were altered between sensitive and resistant cells and between breast cancer tissues (available from The Cancer Genome Atlas project) with low versus high glutaminase (GLS) gene expression. Of note, CB-839-resistant TNBC cells had increased carnitine palmitoyltransferase 2 (CPT2) protein and CPT1 activity levels. In agreement, CB-839-resistant TNBC cells mobilized more fatty acids into mitochondria for oxidation, which responded to AMP-activated protein kinase and acetyl-CoA carboxylase signaling. Moreover, chemical inhibition of both glutaminase and CPT1 decreased cell proliferation and migration of CB-839-resistant cells compared with single inhibition of each enzyme. We propose that dual targeting of glutaminase and CPT1 activities may have therapeutic relevance for managing CB-839-resistant tumors.


Subject(s)
Benzeneacetamides/pharmacology , Carnitine O-Palmitoyltransferase/antagonists & inhibitors , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Glutaminase/antagonists & inhibitors , Glutamine/metabolism , Thiadiazoles/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Female , Humans , Oxidation-Reduction , Triple Negative Breast Neoplasms/enzymology , Triple Negative Breast Neoplasms/pathology , Tumor Cells, Cultured
10.
Biochemistry ; 57(44): 6293-6307, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30295466

ABSTRACT

Phosphate-activated glutaminases catalyze the deamidation of glutamine to glutamate and play key roles in several physiological and pathological processes. In humans, GLS encodes two multidomain splicing isoforms: KGA and GAC. In both isoforms, the canonical glutaminase domain is flanked by an N-terminal region that is folded into an EF-hand-like four-helix bundle. However, the splicing event replaces a well-structured three-repeat ankyrin domain in KGA with a shorter, unordered C-terminal stretch in GAC. The multidomain architecture, which contains putative protein-protein binding motifs, has led to speculation that glutaminases are involved in cellular processes other than glutamine metabolism; in fact, some proteins have been identified as binding partners of KGA and the isoforms of its paralogue gene, GLS2. Here, a yeast two-hybrid assay identified nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) as a new binding partner of the glutaminase. We show that KGA and GAC directly bind PPARγ with a low-micromolar dissociation constant; the interaction involves the N-terminal and catalytic domains of glutaminases as well as the ligand-binding domain of the nuclear receptor. The interaction occurs within the nucleus, and by sequestering PPARγ from its responsive element DR1, the glutaminases decreased nuclear receptor activity as assessed by a luciferase reporter assay. Altogether, our findings reveal an unexpected glutaminase-binding partner and, for the first time, directly link mitochondrial glutaminases to an unanticipated role in gene regulation.


Subject(s)
Gene Expression Regulation , Glutaminase/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Transcription, Genetic , Glutamine/metabolism , Humans , Luciferases/metabolism , Models, Molecular , PPAR gamma/chemistry , Protein Conformation , Protein Domains , Protein Isoforms
11.
Biochimie ; 154: 69-76, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30092248

ABSTRACT

The mitochondrial phosphate-activated glutaminase C (GAC) is produced by the alternative splicing of the GLS gene. Compared to the other GLS isoform, the kidney-type glutaminase (KGA), GAC is more enzymatically efficient and of particular importance for cancer cell growth. Although its catalytic mechanism is well understood, little is known about how post-translational modifications can impact GAC function. Here, we identified by mass spectrometry a phosphorylated serine at the GLS N-terminal domain (at position 95) and investigated its role on regulating GAC activity. The ectopic expression of the phosphomimetic mutant (GAC.S95D) in breast cancer cells, compared to wild-type GAC (GAC.WT), led to decreased glutaminase activity, glutamine uptake, glutamate release and intracellular glutamate levels, without changing GAC sub-cellular localization. Interestingly, cells expressing the GAC.S95D mutant, compared to GAC.WT, presented decreased migration and vimentin level, an epithelial-to-mesenchymal transition marker. These results reveal that GAC is post-translationally regulated by phosphorylation, which affects cellular glutamine metabolism and glutaminase-related cell phenotype.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Glutaminase/metabolism , Mutation, Missense , Neoplasm Proteins/metabolism , Neoplasms/enzymology , Amino Acid Substitution , Cell Line, Tumor , Glutaminase/genetics , Humans , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , Phosphorylation
12.
Sci Rep ; 8(1): 3510, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29472561

ABSTRACT

The active transport of glycolytic pyruvate across the inner mitochondrial membrane is thought to involve two mitochondrial pyruvate carrier subunits, MPC1 and MPC2, assembled as a 150 kDa heterotypic oligomer. Here, the recombinant production of human MPC through a co-expression strategy is first described; however, substantial complex formation was not observed, and predominantly individual subunits were purified. In contrast to MPC1, which co-purifies with a host chaperone, we demonstrated that MPC2 homo-oligomers promote efficient pyruvate transport into proteoliposomes. The derived functional requirements and kinetic features of MPC2 resemble those previously demonstrated for MPC in the literature. Distinctly, chemical inhibition of transport is observed only for a thiazolidinedione derivative. The autonomous transport role for MPC2 is validated in cells when the ectopic expression of human MPC2 in yeast lacking endogenous MPC stimulated growth and increased oxygen consumption. Multiple oligomeric species of MPC2 across mitochondrial isolates, purified protein and artificial lipid bilayers suggest functional high-order complexes. Significant changes in the secondary structure content of MPC2, as probed by synchrotron radiation circular dichroism, further supports the interaction between the protein and ligands. Our results provide the initial framework for the independent role of MPC2 in homeostasis and diseases related to dysregulated pyruvate metabolism.


Subject(s)
Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membranes/chemistry , Pyruvic Acid/metabolism , Circular Dichroism , Gene Expression Regulation/genetics , Humans , Lipid Bilayers/chemistry , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membranes/metabolism , Monocarboxylic Acid Transporters , Protein Structure, Secondary/genetics , Pyruvic Acid/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
13.
BMC Cancer ; 17(1): 727, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29115931

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is characterized by a lack of estrogen and progesterone receptor expression (ESR and PGR, respectively) and an absence of human epithelial growth factor receptor (ERBB2) amplification. Approximately 15-20% of breast malignancies are TNBC. Patients with TNBC often have an unfavorable prognosis. In addition, TNBC represents an important clinical challenge since it does not respond to hormone therapy. METHODS: In this work, we integrated high-throughput mRNA sequencing (RNA-Seq) data from normal and tumor tissues (obtained from The Cancer Genome Atlas, TCGA) and cell lines obtained through in-house sequencing or available from the Gene Expression Omnibus (GEO) to generate a unified list of differentially expressed (DE) genes. Methylome and proteomic data were integrated to our analysis to give further support to our findings. Genes that were overexpressed in TNBC were then curated to retain new potentially druggable targets based on in silico analysis. Knocking-down was used to assess gene importance for TNBC cell proliferation. RESULTS: Our pipeline analysis generated a list of 243 potential new targets for treating TNBC. We finally demonstrated that knock-down of Guanylate-Binding Protein 1 (GBP1 ), one of the candidate genes, selectively affected the growth of TNBC cell lines. Moreover, we showed that GBP1 expression was controlled by epidermal growth factor receptor (EGFR) in breast cancer cell lines. CONCLUSIONS: We propose that GBP1 is a new potential druggable therapeutic target for treating TNBC with enhanced EGFR expression.


Subject(s)
ErbB Receptors/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Gene Expression Profiling/methods , Proteomics/methods , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Computer Simulation , DNA Methylation , Female , Gene Expression Regulation, Neoplastic , High-Throughput Nucleotide Sequencing/methods , Humans , Triple Negative Breast Neoplasms/genetics , Up-Regulation
14.
J Biol Chem ; 292(27): 11572-11585, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28526749

ABSTRACT

On the basis of tissue-specific enzyme activity and inhibition by catalytic products, Hans Krebs first demonstrated the existence of multiple glutaminases in mammals. Currently, two human genes are known to encode at least four glutaminase isoforms. However, the phylogeny of these medically relevant enzymes remains unclear, prompting us to investigate their origin and evolution. Using prokaryotic and eukaryotic glutaminase sequences, we built a phylogenetic tree whose topology suggested that the multidomain architecture was inherited from bacterial ancestors, probably simultaneously with the hosting of the proto-mitochondrion endosymbiont. We propose an evolutionary model wherein the appearance of the most active enzyme isoform, glutaminase C (GAC), which is expressed in many cancers, was a late retrotransposition event that occurred in fishes from the Chondrichthyes class. The ankyrin (ANK) repeats in the glutaminases were acquired early in their evolution. To obtain information on ANK folding, we solved two high-resolution structures of the ANK repeat-containing C termini of both kidney-type glutaminase (KGA) and GLS2 isoforms (glutaminase B and liver-type glutaminase). We found that the glutaminase ANK repeats form unique intramolecular contacts through two highly conserved motifs; curiously, this arrangement occludes a region usually involved in ANK-mediated protein-protein interactions. We also solved the crystal structure of full-length KGA and present a small-angle X-ray scattering model for full-length GLS2. These structures explain these proteins' compromised ability to assemble into catalytically active supra-tetrameric filaments, as previously shown for GAC. Collectively, these results provide information about glutaminases that may aid in the design of isoform-specific glutaminase inhibitors.


Subject(s)
Evolution, Molecular , Glutaminase , Models, Genetic , Models, Molecular , Ankyrin Repeat , Crystallography, X-Ray , Glutaminase/chemistry , Glutaminase/genetics , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Protein Domains , Protein Structure, Quaternary
15.
Structure ; 24(8): 1301-1310, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27427476

ABSTRACT

Focal adhesion kinase (FAK) has emerged as a mediator of mechanotransduction in cardiomyocytes, regulating gene expression during hypertrophic remodeling. However, how FAK signaling is relayed onward to the nucleus is unclear. Here, we show that FAK interacts with and regulates myocyte enhancer factor 2 (MEF2), a master cardiac transcriptional regulator. In cardiomyocytes exposed to biomechanical stimulation, FAK accumulates in the nucleus, binds to and upregulates the transcriptional activity of MEF2 through an interaction with the FAK focal adhesion targeting (FAT) domain. In the crystal structure (2.9 Å resolution), FAT binds to a stably folded groove in the MEF2 dimer, known to interact with regulatory cofactors. FAK cooperates with MEF2 to enhance the expression of Jun in cardiomyocytes, an important component of hypertrophic response to mechanical stress. These findings underscore a connection between the mechanotransduction involving FAK and transcriptional regulation by MEF2, with potential relevance to the pathogenesis of cardiac disease.


Subject(s)
Focal Adhesion Kinase 1/chemistry , Mechanotransduction, Cellular , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-jun/chemistry , Transcription, Genetic , Amino Acid Motifs , Animals , Animals, Newborn , Binding Sites , Cell Line , Cell Nucleus/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Gene Expression , Gene Expression Regulation , Kinetics , MEF2 Transcription Factors/chemistry , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Mice , Models, Molecular , Myocytes, Cardiac/cytology , Primary Cell Culture , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
16.
J Biol Chem ; 288(39): 28009-20, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23935106

ABSTRACT

The phosphate-dependent transition between enzymatically inert dimers into catalytically capable tetramers has long been the accepted mechanism for the glutaminase activation. Here, we demonstrate that activated glutaminase C (GAC) self-assembles into a helical, fiber-like double-stranded oligomer and propose a molecular model consisting of seven tetramer copies per turn per strand interacting via the N-terminal domains. The loop (321)LRFNKL(326) is projected as the major regulating element for self-assembly and enzyme activation. Furthermore, the previously identified in vivo lysine acetylation (Lys(311) in humans, Lys(316) in mouse) is here proposed as an important down-regulator of superoligomer assembly and protein activation. Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, a known glutaminase inhibitor, completely disrupted the higher order oligomer, explaining its allosteric mechanism of inhibition via tetramer stabilization. A direct correlation between the tendency to self-assemble and the activity levels of the three mammalian glutaminase isozymes was established, with GAC being the most active enzyme while forming the longest structures. Lastly, the ectopic expression of a fiber-prone superactive GAC mutant in MDA-MB 231 cancer cells provided considerable proliferative advantages to transformed cells. These findings yield unique implications for the development of GAC-oriented therapeutics targeting tumor metabolism.


Subject(s)
Enzyme Inhibitors/chemistry , Gene Expression Regulation, Neoplastic , Glutaminase/metabolism , Protein Multimerization , Algorithms , Allosteric Site , Catalytic Domain , Cell Line, Tumor , Cell Proliferation , Cross-Linking Reagents , Crystallography, X-Ray , Glutaminase/chemistry , Humans , Isoenzymes/chemistry , Microscopy, Electron, Transmission , Mutagenesis , Mutation , Phosphates/metabolism , Polymers/chemistry , Protein Conformation , Recombinant Proteins/metabolism
17.
Biochemistry ; 50(45): 9901-10, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21999603

ABSTRACT

The necrosis- and ethylene-inducing peptide 1 (NEP1)-like proteins (NLPs) are proteins secreted from bacteria, fungi and oomycetes, triggering immune responses and cell death in dicotyledonous plants. Genomic-scale studies of Moniliophthora perniciosa, the fungus that causes the Witches' Broom disease in cacao, which is a serious economic concern for South and Central American crops, have identified five members of this family (termed MpNEP1-5). Here, we show by RNA-seq that MpNEP2 is virtually the only NLP expressed during the fungus infection. The quantitative real-time polymerase chain reaction results revealed that MpNEP2 has an expression pattern that positively correlates with the necrotic symptoms, with MpNEP2 reaching its highest level of expression at the advanced necrotic stage. To improve our understanding of MpNEP2's molecular mechanism of action, we determined the crystallographic structure of MpNEP2 at 1.8 Å resolution, unveiling some key structural features. The implications of a cation coordination found in the crystal structure were explored, and we show that MpNEP2, in contrast to another previously described member of the NLP family, NLP(Pya) from Pythium aphanidermatum, does not depend on an ion to accomplish its necrosis- and electrolyte leakage-promoting activities. Results of site-directed mutagenesis experiments confirmed the importance of a negatively charged cavity and an unforeseen hydrophobic ß-hairpin loop for MpNEP2 activity, thus offering a platform for compound design with implications for disease control. Electron paramagnetic resonance and fluorescence assays with MpNEP2 performed in the presence of lipid vesicles of different compositions showed no sign of interaction between the protein and the lipids, implying that MpNEP2 likely requires other anchoring elements from the membrane to promote cytolysis or send death signals.


Subject(s)
Agaricales/chemistry , Agaricales/pathogenicity , Cacao/microbiology , Fungal Proteins/chemistry , Plant Diseases/microbiology , Agaricales/genetics , Agaricales/metabolism , Amino Acid Sequence , Amino Acid Substitution , Base Sequence , Crystallography, X-Ray , DNA Primers/genetics , Ethylenes/biosynthesis , Fungal Proteins/genetics , Fungal Proteins/metabolism , Models, Molecular , Mutagenesis, Site-Directed , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Static Electricity , Nicotiana/microbiology
18.
Biochemistry ; 46(5): 1273-83, 2007 Feb 06.
Article in English | MEDLINE | ID: mdl-17260956

ABSTRACT

High-resolution X-ray structures of thyroid hormone (TH) receptor (TR) DNA and ligand binding domains (DBD and LBD) have yielded significant insights into TR action. Nevertheless, the TR DBD and LBD act in concert to mediate TH effects upon gene expression, and TRs form multiple oligomers; however, structures of full-length TRs or DBD-LBD constructs that would clarify these influences are not available. Here, we report low-resolution X-ray structures of the TRbeta DBD-LBD construct in solution which define the shape of dimers and tetramers and likely positions of the DBDs and LBDs. The holo TRbeta DBD-LBD construct forms a homodimer with LBD-DBD pairs in close contact and DBDs protruding from the base in the same direction. The DBDs are connected to the LBDs by crossed extended D domains. The apo hTRbeta DBD-LBD construct forms tetramers that resemble bulged cylinders with pairs of LBD dimers in a head-to-head arrangement with DBD pairs packed tightly against the LBD core. Overall, there are similarities with our previous low-resolution structures of retinoid X receptors, but TRs exhibit two unique features. First, TR DBDs are closely juxtaposed in the dimer and tetramer forms. Second, TR DBDs are closely packed against LBDs in the tetramer, but not the dimer. These findings suggest that TRs may be able to engage in hitherto unknown interdomain interactions and that the D domain must rearrange in different oligomeric forms. Finally, the data corroborate our suggestion that apo TRs form tetramers in solution which dissociate into dimers upon hormone binding.


Subject(s)
Receptors, Thyroid Hormone/chemistry , Triiodothyronine/chemistry , Allosteric Regulation , Allosteric Site , Apoproteins , Binding Sites , Crystallization , Crystallography, X-Ray , Dimerization , Protein Conformation , Solutions
19.
J Mol Biol ; 360(3): 586-98, 2006 Jul 14.
Article in English | MEDLINE | ID: mdl-16781732

ABSTRACT

The thyroid hormone receptor (TR) D-domain links the ligand-binding domain (LBD, EF-domain) to the DNA-binding domain (DBD, C-domain), but its structure, and even its existence as a functional unit, are controversial. The D domain is poorly conserved throughout the nuclear receptor family and was originally proposed to comprise an unfolded hinge that facilitates rotation between the LBD and the DBD. Previous TR LBD structures, however, have indicated that the true unstructured region is three to six amino acid residues long and that the D-domain N terminus folds into a short amphipathic alpha-helix (H0) contiguous with the DBD and that the C terminus of the D-domain comprises H1 and H2 of the LBD. Here, we solve structures of TR-LBDs in different crystal forms and show that the N terminus of the TRalpha D-domain can adopt two structures; it can either fold into an amphipathic helix that resembles TRbeta H0 or form an unstructured loop. H0 formation requires contacts with the AF-2 coactivator-binding groove of the neighboring TR LBD, which binds H0 sequences that resemble coactivator LXXLL motifs. Structural analysis of a liganded TR LBD with small angle X-ray scattering (SAXS) suggests that AF-2/H0 interactions mediate dimerization of this protein in solution. We propose that the TR D-domain has the potential to form functionally important extensions of the DBD and LBD or unfold to permit TRs to adapt to different DNA response elements. We also show that mutations of the D domain LXXLL-like motif indeed selectively inhibit TR interactions with an inverted palindromic response element (F2) in vitro and TR activity at this response element in cell-based transfection experiments.


Subject(s)
Thyroid Hormone Receptors alpha/chemistry , Thyroid Hormone Receptors alpha/metabolism , Thyroid Hormone Receptors beta/chemistry , Thyroid Hormone Receptors beta/metabolism , Amino Acid Motifs , DNA/metabolism , Dimerization , HeLa Cells , Humans , Ligands , Models, Molecular , Protein Binding , Protein Folding , Protein Structure, Tertiary , Response Elements/genetics , Solutions , Structure-Activity Relationship , Triiodothyronine/metabolism , Tumor Cells, Cultured , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...