Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mikrochim Acta ; 189(4): 171, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35364748

ABSTRACT

Gold nanotriangles (AuNTs) functionalized with dithiolated oligonucleotides have been employed to develop an amplification-free electrochemical biosensor for SARS-CoV-2 in patient samples. Gold nanotriangles, prepared through a seed-mediated growth method and exhaustively characterized by different techniques, serve as an improved electrochemical platform and for DNA probe immobilization. Azure A is used as an electrochemical indicator of the hybridization event. The biosensor detects either single stranded DNA or RNA sequences of SARS-CoV-2 of different lengths, with a low detection limit of 22.2 fM. In addition, it allows to detect point mutations in SARS-CoV-2 genome with the aim to detect more infective SARS-CoV-2 variants such as Alpha, Beta, Gamma, Delta, and Omicron. Results obtained with the biosensor in nasopharyngeal swab samples from COVID-19 patients show the possibility to clearly discriminate between non-infected and infected patient samples as well as patient samples with different viral load. Furthermore, the results correlate well with those obtained by the gold standard technique RT-qPCR, with the advantage of avoiding the amplification process and the need of sophisticated equipment.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Nucleic Acid Hybridization , Oligonucleotides , SARS-CoV-2/genetics
2.
Nanomedicine ; 35: 102391, 2021 07.
Article in English | MEDLINE | ID: mdl-33794371

ABSTRACT

Uveal melanoma (UM) is an intraocular tumor which is almost lethal at the metastatic stage due to the lack of effective treatments. In this regard, we have developed an albumin-based nanostructure (ABN) containing AZD8055 (ABN-AZD), which is a potent mTOR kinase inhibitor, for its efficient delivery to the tumors. The drug has been conjugated to ABN using tailored linkers that have a disulfide moiety, allowing its release selectively and effectively in the presence of an elevated concentration of glutathione, such as inside the tumoral cells. Our therapeutic approach induced significant cellular toxicity in uveal melanoma cells, but not in non-tumoral keratinocytes, highlighting the excellent selectivity of the system. In addition, these nanostructures showed excellent activity in vivo, decreasing the tumor surface compared to the free AZD8055 in mice models. Remarkably, the results obtained were achieved employing a dose 23 times lower than those used in previous reports.


Subject(s)
Melanoma/drug therapy , Morpholines , Nanostructures , Serum Albumin, Human , Uveal Neoplasms/drug therapy , Animals , Feeder Cells , Humans , Melanoma/enzymology , Mice , Mice, Nude , Morpholines/chemistry , Morpholines/pharmacology , Nanostructures/chemistry , Nanostructures/therapeutic use , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Serum Albumin, Human/chemistry , Serum Albumin, Human/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Uveal Neoplasms/enzymology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL