Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Syst ; 7(1): 28-40.e4, 2018 07 25.
Article in English | MEDLINE | ID: mdl-29936182

ABSTRACT

Discriminating transcriptional changes that drive disease pathogenesis from nonpathogenic and compensatory responses is a daunting challenge. This is particularly true for neurodegenerative diseases, which affect the expression of thousands of genes in different brain regions at different disease stages. Here we integrate functional testing and network approaches to analyze previously reported transcriptional alterations in the brains of Huntington disease (HD) patients. We selected 312 genes whose expression is dysregulated both in HD patients and in HD mice and then replicated and/or antagonized each alteration in a Drosophila HD model. High-throughput behavioral testing in this model and controls revealed that transcriptional changes in synaptic biology and calcium signaling are compensatory, whereas alterations involving the actin cytoskeleton and inflammation drive disease. Knockdown of disease-driving genes in HD patient-derived cells lowered mutant Huntingtin levels and activated macroautophagy, suggesting a mechanism for mitigating pathogenesis. Our multilayered approach can thus untangle the wealth of information generated by transcriptomics and identify early therapeutic intervention points.


Subject(s)
High-Throughput Screening Assays/methods , Huntington Disease/genetics , Animals , Brain/metabolism , Cell Line , Disease Models, Animal , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Fibroblasts/metabolism , Gene Expression Profiling/methods , Humans , Huntington Disease/physiopathology , Induced Pluripotent Stem Cells , Male , Transcriptome/genetics
2.
Nature ; 498(7454): 325-331, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23719381

ABSTRACT

Many neurodegenerative disorders, such as Alzheimer's, Parkinson's and polyglutamine diseases, share a common pathogenic mechanism: the abnormal accumulation of disease-causing proteins, due to either the mutant protein's resistance to degradation or overexpression of the wild-type protein. We have developed a strategy to identify therapeutic entry points for such neurodegenerative disorders by screening for genetic networks that influence the levels of disease-driving proteins. We applied this approach, which integrates parallel cell-based and Drosophila genetic screens, to spinocerebellar ataxia type 1 (SCA1), a disease caused by expansion of a polyglutamine tract in ataxin 1 (ATXN1). Our approach revealed that downregulation of several components of the RAS-MAPK-MSK1 pathway decreases ATXN1 levels and suppresses neurodegeneration in Drosophila and mice. Importantly, pharmacological inhibitors of components of this pathway also decrease ATXN1 levels, suggesting that these components represent new therapeutic targets in mitigating SCA1. Collectively, these data reveal new therapeutic entry points for SCA1 and provide a proof-of-principle for tackling other classes of intractable neurodegenerative diseases.


Subject(s)
Drosophila melanogaster/metabolism , Mitogen-Activated Protein Kinases/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/toxicity , Nuclear Proteins/metabolism , Nuclear Proteins/toxicity , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Spinocerebellar Ataxias/metabolism , Spinocerebellar Ataxias/pathology , ras Proteins/metabolism , Amino Acid Sequence , Animals , Animals, Genetically Modified , Ataxin-1 , Ataxins , Cell Line, Tumor , Disease Models, Animal , Down-Regulation/drug effects , Drosophila melanogaster/genetics , Female , Humans , MAP Kinase Signaling System/drug effects , Male , Mice , Molecular Sequence Data , Molecular Targeted Therapy , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Phosphorylation , Protein Stability/drug effects , Ribosomal Protein S6 Kinases, 90-kDa/deficiency , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL