Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Chem ; 67(16): 14553-14573, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39116445

ABSTRACT

ACKR3, an atypical chemokine receptor, has been associated with prothrombotic events and the development of cardiovascular events. We designed, synthesized, and evaluated a series of novel small molecule ACKR3 agonists. Extensive structure-activity relationship studies resulted in several promising agonists with potencies ranging from the low micromolar to nanomolar range, for example, 23 (EC50 = 111 nM, Emax = 95%) and 27 (EC50 = 69 nM, Emax = 82%) in the ß-arrestin-recruitment assay. These compounds are selective for ACKR3 versus ACKR2, CXCR3, and CXCR4. Several agonists were subjected to investigations of their P-selectin expression reduction in the flow cytometry experiments. In particular, compounds 23 and 27 showed the highest potency for platelet aggregation inhibition, up to 80% and 97%, respectively. The most promising compounds, especially 27, exhibited good solubility, metabolic stability, and no cytotoxicity, suggesting a potential tool compound for the treatment of platelet-mediated thrombosis.


Subject(s)
Drug Design , Platelet Aggregation Inhibitors , Platelet Aggregation , Receptors, CXCR , Humans , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/chemical synthesis , Platelet Aggregation Inhibitors/chemistry , Structure-Activity Relationship , Platelet Aggregation/drug effects , Receptors, CXCR/agonists , Receptors, CXCR/metabolism , Animals , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , P-Selectin/metabolism , Blood Platelets/drug effects , Blood Platelets/metabolism
2.
Thromb Res ; 234: 63-74, 2024 02.
Article in English | MEDLINE | ID: mdl-38171216

ABSTRACT

BACKGROUND AND AIMS: Hemolysis is a known risk factor for thrombosis resulting in critical limb ischemia and microcirculatory disturbance and organ failure. Intravasal hemolysis may lead to life-threatening complications due to uncontrolled thrombo-inflammation. Until now, conventional antithrombotic therapies failed to control development and progression of these thrombotic events. Thus, the pathophysiology of these thrombotic events needs to be investigated to unravel underlying pathways and thereby identify targets for novel treatment strategies. METHODS: Here we used classical experimental set-ups as well as high-end flow cytometry, metabolomics and lipidomic analysis to in-depth analyze the effects of hemin on platelet physiology and morphology. RESULTS: Hemin does strongly and swiftly induce platelet activation and this process is modulated by the sGC-cGMP-cGKI signaling axis. cGMP modulation also reduced the pro-aggregatory potential of plasma derived from patients with hemolysis. Furthermore, hemin-induced platelet death evokes distinct platelet subpopulations. Typical cell death markers, such as ROS, were induced by hemin-stimulation and the platelet lipidome was specifically altered by high hemin concentration. Specifically, arachidonic acid derivates, such as PGE2, TXB2 or 12-HHT, were significantly increased. Balancing the cGMP levels by modulation of the sGC-cGMP-cGKI axis diminished the ferroptotic effect of hemin. CONCLUSION: We found that cGMP modulates hemin-induced platelet activation and thrombus formation in vitro and cGMP effects hemin-mediated platelet death and changes in the platelet lipidome. Thus, it is tempting to speculate that modulating platelet cGMP levels may be a novel strategy to control thrombosis and critical limb ischemia in patients with hemolytic crisis.


Subject(s)
Hemin , Thrombosis , Humans , Hemin/pharmacology , Hemin/metabolism , Chronic Limb-Threatening Ischemia , Hemolysis , Microcirculation , Blood Platelets/metabolism , Thrombosis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL