Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
J Cell Sci ; 135(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35178554

ABSTRACT

Mutations in SPAG1, a dynein axonemal assembly factor (DNAAF) that facilitates the assembly of dynein arms in the cytoplasm before their transport into the cilium, result in primary ciliary dyskinesia (PCD), a genetically heterogenous disorder characterized by chronic oto-sino-pulmonary disease, infertility and laterality defects. To further elucidate the role of SPAG1 in dynein assembly, we examined its expression, interactions and ciliary defects in control and PCD human airway epithelia. Immunoprecipitations showed that SPAG1 interacts with multiple DNAAFs, dynein chains and canonical components of the R2TP complex. Protein levels of dynein heavy chains (DHCs) and interactions between DHCs and dynein intermediate chains (DICs) were reduced in SPAG1 mutants. We also identified a previously uncharacterized 60 kDa SPAG1 isoform, through examination of PCD subjects with an atypical ultrastructural defect for SPAG1 variants, that can partially compensate for the absence of full-length SPAG1 to assemble a reduced number of outer dynein arms. In summary, our data show that SPAG1 is necessary for axonemal dynein arm assembly by scaffolding R2TP-like complexes composed of several DNAAFs that facilitate the folding and/or binding of the DHCs to the DIC complex.


Subject(s)
Axonemal Dyneins , Axoneme , Antigens, Surface/metabolism , Axonemal Dyneins/genetics , Axonemal Dyneins/metabolism , Axoneme/metabolism , Cilia/metabolism , Dyneins/genetics , Dyneins/metabolism , GTP-Binding Proteins/metabolism , Humans , Mutation/genetics , Respiratory System/metabolism
3.
ACS Chem Biol ; 14(5): 1020-1029, 2019 05 17.
Article in English | MEDLINE | ID: mdl-31021596

ABSTRACT

ONC201 is a first-in-class imipridone molecule currently in clinical trials for the treatment of multiple cancers. Despite enormous clinical potential, the mechanism of action is controversial. To investigate the mechanism of ONC201 and identify compounds with improved potency, we tested a series of novel ONC201 analogues (TR compounds) for effects on cell viability and stress responses in breast and other cancer models. The TR compounds were found to be ∼50-100 times more potent at inhibiting cell proliferation and inducing the integrated stress response protein ATF4 than ONC201. Using immobilized TR compounds, we identified the human mitochondrial caseinolytic protease P (ClpP) as a specific binding protein by mass spectrometry. Affinity chromatography/drug competition assays showed that the TR compounds bound ClpP with ∼10-fold higher affinity compared to ONC201. Importantly, we found that the peptidase activity of recombinant ClpP was strongly activated by ONC201 and the TR compounds in a dose- and time-dependent manner with the TR compounds displaying a ∼10-100 fold increase in potency over ONC201. Finally, siRNA knockdown of ClpP in SUM159 cells reduced the response to ONC201 and the TR compounds, including induction of CHOP, loss of the mitochondrial proteins (TFAM, TUFM), and the cytostatic effects of these compounds. Thus, we report that ClpP directly binds ONC201 and the related TR compounds and is an important biological target for this class of molecules. Moreover, these studies provide, for the first time, a biochemical basis for the difference in efficacy between ONC201 and the TR compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Endopeptidase Clp/antagonists & inhibitors , Heterocyclic Compounds, 4 or More Rings/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Chromatography, Affinity , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Enzyme Activation , Gene Knockdown Techniques , Heterocyclic Compounds, 4 or More Rings/chemistry , Humans , Imidazoles , Mitochondria/drug effects , Mitochondria/enzymology , Pyridines , Pyrimidines
4.
Methods Mol Biol ; 854: 47-66, 2012.
Article in English | MEDLINE | ID: mdl-22311753

ABSTRACT

Difference gel electrophoresis (DIGE) is a common technique for characterizing differential protein expression in quantitative proteomics. Usually a combination of enzymatic digestion and peptide analysis by mass spectrometry is used to identify differentially expressed proteins following separation and statistical analysis by DIGE. In this chapter, methods for gel spot picking, enzymatic digestion, and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) for protein identification of DIGE-analyzed proteins are discussed. Two examples are given: first, a specific protein is used to test the sensitivity of the 2D DIGE/MALDI MS combination for protein quantification and identification, and second, several proteins with and without the labels typically used in DIGE are identified to demonstrate that these labels do not alter MS-based protein identification. Technical variations of protein gel spot preparation, in-gel digestion, and mass spectral protein identification are discussed.


Subject(s)
Proteins/analysis , Proteins/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Two-Dimensional Difference Gel Electrophoresis/methods , Humans , Peptide Fragments/analysis , Peptide Fragments/chemistry , Peptide Fragments/isolation & purification , Peptide Fragments/metabolism , Proteins/isolation & purification , Proteins/metabolism , Proteomics , Trypsin/metabolism
5.
Proteomics ; 11(14): 2763-76, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21681990

ABSTRACT

Due to the lack of precise markers indicative of its occurrence and progression, coronary artery disease (CAD), the most common type of heart diseases, is currently associated with high mortality in the United States. To systemically identify novel protein biomarkers associated with CAD progression for early diagnosis and possible therapeutic intervention, we employed an iTRAQ-based quantitative proteomic approach to analyze the proteome changes in the plasma collected from a pair of wild-type versus apolipoprotein E knockout (APOE(-/-) ) mice which were fed with a high fat diet. In a multiplex manner, iTRAQ serves as the quantitative 'in-spectra' marker for 'cross-sample' comparisons to determine the differentially expressed/secreted proteins caused by APOE knock-out. To obtain the most comprehensive proteomic data sets from this CAD-associated mouse model, we applied both MALDI and ESI-based mass spectrometric (MS) platforms coupled with two different schemes of multidimensional liquid chromatography (2-D LC) separation. We then comparatively analyzed a series of the plasma samples collected at 6 and 12 wk of age after the mice were fed with fat diets, where the 6- or 12-wk time point represents the early or intermediate phase of the fat-induced CAD, respectively. We then categorized those proteins showing abundance changes in accordance with APOE depletion. Several proteins such as the γ and ß chains of fibrinogen, apolipoprotein B, apolipoprotein C-I, and thrombospondin-4 were among the previously known CAD markers identified by other methods. Our results suggested that these unbiased proteomic methods are both feasible and a practical means of discovering potential biomarkers associated with CAD progression.


Subject(s)
Apolipoproteins E/genetics , Biomarkers/blood , Coronary Artery Disease/blood , Mice, Knockout , Proteomics/methods , Adult , Animals , Biomarkers/chemistry , Chromatography, Liquid/methods , Coronary Artery Disease/diagnosis , Disease Progression , Female , Humans , Male , Mice , Mice, Inbred C57BL , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
6.
Biochemistry ; 48(29): 6898-908, 2009 Jul 28.
Article in English | MEDLINE | ID: mdl-19555087

ABSTRACT

Salvinorin A, the most potent naturally occurring hallucinogen, has attracted an increasing amount of attention since the kappa-opioid receptor (KOR) was identified as its principal molecular target by us [Roth, B. L., et al. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 11934-11939]. Here we report the design, synthesis, and biochemical characterization of novel, irreversible, salvinorin A-derived ligands suitable as active state probes of the KOR. On the basis of prior substituted cysteine accessibility and molecular modeling studies, C315(7.38) was chosen as a potential anchoring point for covalent labeling of salvinorin A-derived ligands. Automated docking of a series of potential covalently bound ligands suggested that either a haloacetate moiety or other similar electrophilic groups could irreversibly bind with C315(7.38). 22-Thiocyanatosalvinorin A (RB-64) and 22-chlorosalvinorin A (RB-48) were both found to be extraordinarily potent and selective KOR agonists in vitro and in vivo. As predicted on the basis of molecular modeling studies, RB-64 induced wash-resistant inhibition of binding with a strict requirement for a free cysteine in or near the binding pocket. Mass spectrometry (MS) studies utilizing synthetic KOR peptides and RB-64 supported the hypothesis that the anchoring residue was C315(7.38) and suggested one biochemical mechanism for covalent binding. These studies provide direct evidence of the presence of a free cysteine in the agonist-bound state of the KOR and provide novel insights into the mechanism by which salvinorin A binds to and activates the KOR.


Subject(s)
Diterpenes, Clerodane/chemistry , Receptors, Opioid, kappa/chemistry , Cell Line , Diterpenes, Clerodane/chemical synthesis , Diterpenes, Clerodane/pharmacology , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Probes , Molecular Structure , Mutagenesis , Receptors, Opioid, kappa/drug effects , Receptors, Opioid, kappa/genetics
7.
J Am Chem Soc ; 131(17): 6114-23, 2009 May 06.
Article in English | MEDLINE | ID: mdl-19354244

ABSTRACT

The oxidation of guanine to 5-carboxamido-5-formamido-2-iminohydantoin (2-Ih) is shown to be a major transformation in the oxidation of the single-stranded DNA 5-mer d(TTGTT) by m-chloroperbenzoic acid (m-CPBA) and dimethyldioxirane (DMDO) as a model for peracid oxidants and in the oxidation of the 5-base pair duplex d[(TTGTT).(AACAA)] with DMDO. 2-Ih has not been reported as an oxidative lesion at the level of single/double-stranded DNA or at the nucleoside/nucleotide level. The lesion is stable to DNA digestion and chromatographic purification, suggesting that 2-Ih may be a stable biomarker in vivo. The oxidation products have been structurally characterized and the reaction mechanism has been probed by oxidation of the monomeric species dGuo, dGMP, and dGTP. DMDO selectively oxidizes the guanine moiety of dGuo, dGMP, and dGTP to 2-Ih, and both peracetic and m-chloroperbenzoic acids exhibit the same selectivity. The presence of the glycosidic bond results in the stereoselective induction of an asymmetric center at the spiro carbon to give a mixture of diastereomers, with each diastereomer in equilibrium with a minor conformer through rotation about the formamido C-N bond. Labeling studies with [(18)O(2)]-m-CPBA and H(2)(18)O to determine the source of the added oxygen atoms have established initial epoxidation of the guanine 4-5 bond with pyrimidine ring contraction by an acyl 1,2-migration of guanine carbonyl C6 to form a transient dehydrodeoxyspiroiminodihydantoin followed by hydrolytic ring-opening of the imidazolone ring. Consistent with the proposed mechanism, no 8-oxoguanine was detected as a product of the oxidations of the oligonucleotides or monomeric species mediated by DMDO or the peracids. The 2-Ih base thus appears to be a pathway-specific lesion generated by peracids and possibly other epoxidizing agents and holds promise as a potential biomarker.


Subject(s)
Chlorobenzoates/chemistry , DNA/chemistry , Epoxy Compounds/chemistry , Hydantoins/chemistry , Oxidants/chemistry , Guanine/chemistry , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Time Factors
8.
J Proteome Res ; 4(3): 992-7, 2005.
Article in English | MEDLINE | ID: mdl-15952747

ABSTRACT

In this work, a method for improved protein identification of low-abundance proteins using unstained gels, in combination with robotics and matrix-assisted laser desorption/ionization tandem mass spectrometry, has been developed and evaluated. Omitting the silver-staining process resulted in increased protein identification scores, an increase in the number of peptides observed in the MALDI mass spectrum, and improved quality of the tandem mass spectrometry data.


Subject(s)
Electrophoresis, Polyacrylamide Gel/methods , Proteins/analysis , Animals , Electrophoresis, Polyacrylamide Gel/standards , Gels , Humans , Proteins/standards , Robotics , Silver Staining , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
9.
Methods Mol Biol ; 301: 117-51, 2005.
Article in English | MEDLINE | ID: mdl-15917630

ABSTRACT

Protocols are given for a variety of techniques used in protein identification of complexes, including identification of in-gel separated proteins and LC-MS/MS. Gels, staining procedures, and peptide extraction protocols that are compatible with mass spectrometry are described. The detection limits of the various staining procedures and their compatibility with mass spectrometry are discussed. The various mass spectrometric techniques used (MALDI-MS, MALDI-MS/MS, nanospray, and ESI/LC-MS/MS) are also described, along with an indication of the advantages and disadvantages of each, and when they would most appropriately be used. Common pitfalls associated with database searching are also discussed.


Subject(s)
Databases, Protein , Proteomics/methods , Sequence Analysis, Protein/methods , Animals , Electrophoresis, Gel, Two-Dimensional , Humans , Peptide Mapping/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...