Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Res ; 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071276

ABSTRACT

CASE STUDY: On May 9th, 2023, a U.S. Border Patrol detained a family of five near Brownsville, TX. During processing, one of the family members, an eight-year-old girl, ADRA, was noted to have sickle cell anemia and a heart disease condition. Five days after they arrived at the Donna Facility, on May 14th, ADRA displayed symptoms, including abdominal pain and fever, and tested positive for Influenza A. She was administered medication and transferred to a designated isolation unit at the Harlingen Border Patrol Station. Despite her deteriorating condition and her mother's urgent requests for medical intervention, there were no documented consultations with an on-call physician or considerations for her transfer to a local hospital. On May 17th, ADRA's health critically declined, marked by multiple visits to the medical unit for vomiting and abdominal pain. An ambulance was dispatched only after ADRA experienced a seizure and became unresponsive, Fig. 1. Her subsequent death was deemed a "preventable tragedy" attributed to systemic failures in the Border Patrol's medical care and decision-making processes in a juvenile care monitor's report.1 IMPACT: This article adds to the existing literature by: Summarizing the gap in age-specific guidelines for six chronic diseases that occur in children and adolescents held in custody. Identifying the lack of adequate intervention strategies for acute management of chronic diseases for youth held in custody and strategies for improving health equity.

2.
J Chem Theory Comput ; 15(12): 6895-6906, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31689089

ABSTRACT

One of the major open challenges in ab initio simulations of the electrochemical interface is the determination of electrochemical barriers under a constant driving force. Existing methods to do so include extrapolation techniques based on fully explicit treatments of the electrolyte, as well as implicit solvent models which allow for a continuous variation in electrolyte charge. Emerging hybrid continuum models have the potential to revolutionize the field, since they account for the electrolyte with little computational cost while retaining some explicit electrolyte, representing a "best of both worlds" method. In this work, we present a unified approach to determine reaction energetics from fully explicit, implicit, and hybrid treatments of the electrolyte based on a new multicapacitor model of the electrochemical interface. A given electrode potential can be achieved by a variety of interfacial structures; a crucial insight from this work is that the effective surface charge gives a good proxy of the local potential, the true driving force of electrochemical processes. In contrast, we show that the traditionally considered work function gives rise to multivalued functions depending on the simulation cell size. Furthermore, we show that the reaction energetics are largely insensitive to the countercharge distribution chosen in hybrid implicit/explicit models, which means that any of the myriad implicit electrolyte models can be equivalently applied. This work thus paves the way for the accurate treatment of ab initio reaction energetics of general surface electrochemical processes using both implicit and explicit electrolytes.

3.
Chemphyschem ; 20(22): 3074-3080, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31317628

ABSTRACT

Modelling the electrolyte at the electrochemical interface remains a major challenge in ab initio simulations of charge transfer processes at surfaces. Recently, the development of hybrid polarizable continuum models/ab initio models have allowed for the treatment of solvation and electrolyte charge in a computationally efficient way. However, challenges remain in its application. Recent literature has reported that large cell heights are required to reach convergence, which presents a serious computational cost. Furthermore, calculations of reaction energetics require costly iterations to tune the surface charge to the desired potential. In this work, we present a simple capacitor model of the interface that illuminates how to circumvent both of these challenges. We derive a correction to the energy for finite cell heights to obtain the large cell energies at no additional computational expense. We furthermore demonstrate that the reaction energetics determined at constant charge are easily mapped to those at constant potential, which eliminates the need to apply iterative schemes to tune the system to a constant potential. These developments together represent more than an order of magnitude reduction of the computational overhead required for the application of polarizable continuum models to surface electrochemistry.

4.
Science ; 355(6321)2017 01 13.
Article in English | MEDLINE | ID: mdl-28082532

ABSTRACT

Electrocatalysis plays a central role in clean energy conversion, enabling a number of sustainable processes for future technologies. This review discusses design strategies for state-of-the-art heterogeneous electrocatalysts and associated materials for several different electrochemical transformations involving water, hydrogen, and oxygen, using theory as a means to rationalize catalyst performance. By examining the common principles that govern catalysis for different electrochemical reactions, we describe a systematic framework that clarifies trends in catalyzing these reactions, serving as a guide to new catalyst development while highlighting key gaps that need to be addressed. We conclude by extending this framework to emerging clean energy reactions such as hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, where the development of improved catalysts could allow for the sustainable production of a broad range of fuels and chemicals.

5.
Science ; 353(6303): 1011-1014, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27701108

ABSTRACT

Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrOx/SrIrO3) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO3 This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidic electrolyte. Density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO3 or anatase IrO2 motifs. The IrOx/SrIrO3 catalyst outperforms known IrOx and ruthenium oxide (RuOx) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte.

6.
J Aerosol Med Pulm Drug Deliv ; 27(1): 21-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23461532

ABSTRACT

BACKGROUND: Previous studies showed nasal spray in vitro tests cannot predict in vivo deposition, pharmacokinetics, or pharmacodynamics. This challenge makes it difficult to assess deposition achieved with new technologies delivering to the therapeutically beneficial posterior nasal cavity. In this study, we determined best parameters for using a regionally divided nasal cast to predict deposition. Our study used a model suspension and a design of experiments to produce repeatable deposition results that mimic nasal deposition patterns of nasal suspensions from the literature. METHODS: The seven-section (the nozzle locator, nasal vestibule, front turbinate, rear turbinate, olfactory region, nasopharynx, and throat filter) nylon nasal cast was based on computed tomography images of healthy humans. It was coated with a glycerol/Brij-35 solution to mimic mucus. After assembling and orienting, airflow was applied and nasal spray containing a model suspension was sprayed. After disassembling the cast, drug depositing in each section was assayed by HPLC. The success criteria for optimal settings were based on nine in vivo studies in the literature. The design of experiments included exploratory and half factorial screening experiments to identify variables affecting deposition (angles, airflow, and airflow time), optimization experiments, and then repeatability and reproducibility experiments. RESULTS: We found tilt angle and airflow time after actuation affected deposition the most. The optimized settings were flow rate of 16 L/min, postactuation flow time of 12 sec, a tilt angle of 23°, nozzle angles of 0°, and actuation speed of 5 cm/sec. Neither cast nor operator caused significant variation of results. CONCLUSION: We determined cast parameters to produce results resembling suspension nasal sprays in the literature. The results were repeatable and unaffected by operator or cast. These nasal spray parameters could be used to assess deposition from new devices or formulations. For human deposition studies using radiolabeled formulations, this cast could show that radiolabel deposition represents drug deposition. Our methods could also be used to optimize settings for other casts.


Subject(s)
Models, Anatomic , Nasal Mucosa/metabolism , Nose/anatomy & histology , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/metabolism , Research Design , Technology, Pharmaceutical/methods , Administration, Intranasal , Chromatography, High Pressure Liquid , Glycerol/chemistry , Humans , Mucus/chemistry , Nasal Sprays , Nose/diagnostic imaging , Polyethylene Glycols/chemistry , Radiography , Reproducibility of Results
7.
Inhal Toxicol ; 26(1): 36-47, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24354791

ABSTRACT

Inhalation of cigarette smoke particles (CSP) leads to adverse health effects in smokers. Determination of the localized dose to the lung of the inhaled smoke aids in determining vulnerable sites, and identifying components of the smoke that may be responsible for the adverse effects; thus providing a roadmap for harm reduction of cigarette smoking. A particle deposition model specific to CSP was developed for the oral cavity and the lung by accounting for cigarette particle size growth by hygroscopicity, phase change and coagulation. In addition, since the cigarette puff enters the respiratory tract as a dense cloud, the cloud effect on particle drag and deposition was accounted for in the deposition model. Models of particle losses in the oral cavities were developed during puff drawing and subsequent mouth-hold. Cigarette particles were found to grow by hygroscopicity and coagulation, but to shrink as a result of nicotine evaporation. The particle size reached a plateau beyond which any disturbances in the environmental conditions caused the various mechanisms to balance each other out and the particle size remain stable. Predicted particle deposition considering the cloud effects was greater than when treated as a collection of non-interacting particles (i.e. no cloud effects). Accounting for cloud movement provided the necessary physical mechanism to explain the greater than expected, experimentally observed and particle deposition. The deposition model for CSP can provide the necessary input to determine the fate of inhaled CSP in the lung. The knowledge of deposition will be helpful for health assessment and identification and reduction of harmful components of CSP.


Subject(s)
Models, Biological , Nicotiana , Respiratory System/metabolism , Smoke/analysis , Flocculation , Humans , Mouth/chemistry , Particle Size , Smoking/metabolism , Water/chemistry
8.
Chem Cent J ; 5: 50, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21867559

ABSTRACT

BACKGROUND: There have been many recent developments of in vitro cigarette smoke systems closely replicating in vivo exposures. The Borgwaldt RM20S smoking machine (RM20S) enables the serial dilution and delivery of cigarette smoke to exposure chambers for in vitro analyses. In this study we have demonstrated reliability and robustness testing of the RM20S in delivering smoke to in vitro cultures using an in-house designed whole smoke exposure chamber. RESULTS: The syringe precision and accuracy of smoke dose generated by the RM20S was assessed using a methane gas standard and resulted in a repeatability error of ≤9%. Differential electrical mobility particle spectrometry (DMS) measured smoke particles generated from reference 3R4F cigarettes at points along the RM20S. 53% ± 5.9% of particles by mass reached the chamber, the remainder deposited in the syringe or connecting tubing and ~16% deposited in the chamber. Spectrofluorometric quantification of particle deposition within chambers indicated a positive correlation between smoke concentration and particle deposition. In vitro air-liquid interface (ALI) cultures (H292 lung epithelial cells), exposed to whole smoke (1:60 dilution (smoke:air, equivalent to ~5 µg/cm2)) demonstrated uniform smoke delivery within the chamber. CONCLUSIONS: These results suggest this smoke exposure system is a reliable and repeatable method of generating and exposing ALI in vitro cultures to cigarette smoke. This system will enable the evaluation of future tobacco products and individual components of cigarette smoke and may be used as an alternative in vitro tool for evaluating other aerosols and gaseous mixtures such as air pollutants, inhaled pharmaceuticals and cosmetics.

9.
J Aerosol Med ; 20(1): 59-74, 2007.
Article in English | MEDLINE | ID: mdl-17388754

ABSTRACT

Many studies suggest limited effectiveness of spray devices for nasal drug delivery due primarily to high deposition and clearance at the front of the nose. Here, nasal spray behavior was studied using experimental measurements and a computational fluid dynamics model of the human nasal passages constructed from magnetic resonance imaging scans of a healthy adult male. Eighteen commercially available nasal sprays were analyzed for spray characteristics using laser diffraction, high-speed video, and high-speed spark photography. Steadystate, inspiratory airflow (15 L/min) and particle transport were simulated under measured spray conditions. Simulated deposition efficiency and spray behavior were consistent with previous experimental studies, two of which used nasal replica molds based on this nasal geometry. Deposition fractions (numbers of deposited particles divided by the number released) of 20- and 50-microm particles exceeded 90% in the anterior part of the nose for most simulated conditions. Predicted particle penetration past the nasal valve improved when (1) the smaller of two particle sizes or the lower of two spray velocities was used, (2) the simulated nozzle was positioned 1.0 rather than 0.5 or 1.5 cm into the nostril, and (3) inspiratory airflow was present rather than absent. Simulations also predicted that delaying the appearance of normal inspiratory airflow more than 1 sec after the release of particles produced results equivalent to cases in which no inspiratory airflow was present. These predictions contribute to more effective design of drug delivery devices through a better understanding of the effects of nasal airflow and spray characteristics on particle transport in the nose.


Subject(s)
Models, Biological , Nasal Cavity/physiology , Nebulizers and Vaporizers , Administration, Inhalation , Adult , Aerosols , Anatomy, Cross-Sectional , Computer Simulation , Forecasting , Humans , Inhalation/physiology , Lasers , Magnetic Resonance Imaging , Male , Particle Size , Photography , Rheology , Time Factors , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...