Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Hered ; 114(4): 312-325, 2023 06 22.
Article in English | MEDLINE | ID: mdl-36921030

ABSTRACT

Heterotrophy has been shown to mitigate coral-algal dysbiosis (coral bleaching) under heat challenge, but the molecular mechanisms underlying this phenomenon remain largely unexplored. Here, we quantified coral physiology and gene expression of fragments from 13 genotypes of symbiotic Oculina arbuscula after a 28-d feeding experiment under (1) fed, ambient (24 °C); (2) unfed, ambient; (3) fed, heated (ramp to 33 °C); and (4) unfed, heated treatments. We monitored algal photosynthetic efficiency throughout the experiment, and after 28 d, profiled coral and algal carbohydrate and protein reserves, coral gene expression, algal cell densities, and chlorophyll-a and chlorophyll-c2 pigments. Contrary to previous findings, heterotrophy did little to mitigate the impacts of temperature, and we observed few significant differences in physiology between fed and unfed corals under heat challenge. Our results suggest the duration and intensity of starvation and thermal challenge play meaningful roles in coral energetics and stress response; future work exploring these thresholds and how they may impact coral responses under changing climate is urgently needed. Gene expression patterns under heat challenge in fed and unfed corals showed gene ontology enrichment patterns consistent with classic signatures of the environmental stress response. While gene expression differences between fed and unfed corals under heat challenge were subtle: Unfed, heated corals uniquely upregulated genes associated with cell cycle functions, an indication that starvation may induce the previously described, milder "type B" coral stress response. Future studies interested in disentangling the influence of heterotrophy on coral bleaching would benefit from leveraging the facultative species studied here, but using the coral in its symbiotic and aposymbiotic states.


Subject(s)
Anthozoa , Hot Temperature , Animals , Anthozoa/genetics , Anthozoa/metabolism , Stress, Physiological/genetics , Chlorophyll/metabolism , Symbiosis/physiology , Gene Expression , Coral Reefs
SELECTION OF CITATIONS
SEARCH DETAIL
...