Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Br J Pharmacol ; 180(24): 3254-3270, 2023 12.
Article in English | MEDLINE | ID: mdl-37522273

ABSTRACT

BACKGROUND AND PURPOSE: Guanylyl cyclase-A (GC-A), activated by endogenous atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), plays an important role in the regulation of cardiovascular and renal homeostasis and is an attractive drug target. Even though small molecule modulators allow oral administration and longer half-life, drug targeting of GC-A has so far been limited to peptides. Thus, in this study we aimed to develop small molecular activators of GC-A. EXPERIMENTAL APPROACH: Hits were identified through high-throughput screening and optimized by in silico design. Cyclic GMP was measured in QBIHEK293A cells expressing GC-A, GC-B or chimerae of the two receptors using AlphaScreen technology. Binding assays were performed in membrane preparations or whole cells using 125 I-ANP. Vasorelaxation was measured in aortic rings isolated from Wistar rats. KEY RESULTS: We have identified small molecular allosteric enhancers of GC-A, which enhanced ANP or BNP effects in cellular systems and ANP-induced vasorelaxation in rat aortic rings. The mechanism of action appears novel and not mediated through previously described allosteric binding sites. In addition, the selectivity and activity depend on a single amino acid residue that differs between the two similar receptors GC-A and GC-B. CONCLUSION AND IMPLICATIONS: We describe a novel allosteric binding site on GC-A, which can be targeted by small molecules to enhance ANP and BNP effects. These compounds will be valuable tools in further development and proof-of-concept of GC-A enhancement for the potential use in cardiovascular therapy.


Subject(s)
Atrial Natriuretic Factor , Guanylate Cyclase , Rats , Animals , Atrial Natriuretic Factor/pharmacology , Atrial Natriuretic Factor/metabolism , Guanylate Cyclase/metabolism , Rats, Wistar , Receptors, Atrial Natriuretic Factor/metabolism , Natriuretic Peptide, Brain/metabolism , Natriuretic Peptide, Brain/pharmacology , Cyclic GMP/metabolism
2.
Surg Obes Relat Dis ; 18(4): 485-493, 2022 04.
Article in English | MEDLINE | ID: mdl-34998697

ABSTRACT

BACKGROUND: Obesity and diabetes are associated with an increased incidence of pancreatic cancer. Fatty acid binding protein 4 (FABP4), noted to be higher in patients with severe obesity, is linked to the development and progression of several cancers, and its level in the circulation decreases after bariatric surgery. OBJECTIVE: In this paper, we evaluate the role of FABP4 in pancreatic cancer progression. SETTING: University Hospital and Laboratories, United States. METHODS AND RESULTS: When Panc-1 (human) and Pan02 (mouse) pancreatic cancer cells were treated with FABP4 or the-single-point mutant FABP4 (R126Q, fatty acid binding site mutant), only FABP4 stimulated cellular proliferation. The transcriptional activity of nuclear factor E2-related factor 2 (NRF2) was increased in response to FABP4 but not the R126Q. FABP4 treatment also led to downregulation of reactive oxygen species (ROS) activity. Consistent with induced cell propagation by FABP4, the growth of Pan02 tumor was decreased in FABP4-null animals compared with C57BL/6J controls. CONCLUSION: These results suggest that FABP4 increases pancreatic cancer proliferation via activation of NRF2 and downregulation of ROS activity.


Subject(s)
Fatty Acid-Binding Proteins/metabolism , NF-E2-Related Factor 2 , Pancreatic Neoplasms , Animals , Cell Proliferation , Fatty Acid-Binding Proteins/genetics , Humans , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
3.
FASEB J ; 36(1): e22069, 2022 01.
Article in English | MEDLINE | ID: mdl-34859913

ABSTRACT

Atrial natriuretic peptide (NP) and BNP increase cGMP, which reduces blood pressure and cardiac hypertrophy by activating guanylyl cyclase (GC)-A, also known as NPR-A or Npr1. Although GC-A is highly phosphorylated, and dephosphorylation inactivates the enzyme, the significance of GC-A phosphorylation to heart structure and function remains unknown. To identify in vivo processes that are regulated by GC-A phosphorylation, we substituted glutamates for known phosphorylation sites to make GC-A8E/8E mice that express an enzyme that cannot be inactivated by dephosphorylation. GC-A activity, but not protein, was increased in heart and kidney membranes from GC-A8E/8E mice. Activities were threefold higher in female compared to male cardiac ventricles. Plasma cGMP and testosterone were elevated in male and female GC-A8E/8E mice, but aldosterone was only increased in mutant male mice. Plasma and urinary creatinine concentrations were decreased and increased, respectively, but blood pressure and heart rate were unchanged in male GC-A8E/8E mice. Heart weight to body weight ratios for GC-A8E/8E male, but not female, mice were 12% lower with a 14% reduction in cardiomyocyte cross-sectional area. Subcutaneous injection of fsANP, a long-lived ANP analog, increased plasma cGMP and decreased aldosterone in male GC-AWT/WT and GC-A8E/8E mice at 15 min, but only GC-A8E/8E mice had elevated levels of plasma cGMP and aldosterone at 60 min. fsANP reduced ventricular ERK1/2 phosphorylation to a greater extent and for a longer time in the male mutant compared to WT mice. Finally, ejection fractions were increased in male but not female hearts from GC-A8E/8E mice. We conclude that increased phosphorylation-dependent GC-A activity decreases cardiac ERK activity, which results in smaller male hearts with improved systolic function.


Subject(s)
Cardiomegaly , MAP Kinase Signaling System , Phosphorylation , Receptors, Atrial Natriuretic Factor , Sex Characteristics , Animals , Cardiomegaly/enzymology , Cardiomegaly/genetics , Female , Male , Mice , Mice, Transgenic , Receptors, Atrial Natriuretic Factor/genetics , Receptors, Atrial Natriuretic Factor/metabolism
4.
J Neurosci ; 38(45): 9768-9780, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30249793

ABSTRACT

cGMP signaling elicited by activation of the transmembrane receptor guanylyl cyclase Npr2 (also known as guanylyl cyclase B) by the ligand CNP controls sensory axon bifurcation of DRG and cranial sensory ganglion (CSG) neurons entering the spinal cord or hindbrain, respectively. Previous studies have shown that Npr2 is phosphorylated on serine and threonine residues in its kinase homology domain (KHD). However, it is unknown whether phosphorylation of Npr2 is essential for axon bifurcation. Here, we generated a knock-in mouse line in which the seven regulatory serine and threonine residues in the KHD of Npr2 were substituted by alanine (Npr2-7A), resulting in a nonphosphorylatable enzyme. Real-time imaging of cGMP in DRG neurons with a genetically encoded fluorescent cGMP sensor or biochemical analysis of guanylyl cyclase activity in brain or lung tissue revealed the absence of CNP-induced cGMP generation in the Npr27A/7A mutant. Consequently, bifurcation of axons, but not collateral formation, from DRG or CSG in this mouse mutant was perturbed at embryonic and mature stages. In contrast, axon branching was normal in a mouse mutant in which constitutive phosphorylation of Npr2 is mimicked by a replacement of all of the seven serine and threonine sites by glutamic acid (Npr2-7E). Furthermore, we demonstrate that the Npr27A/7A mutation causes dwarfism as described for global Npr2 mutants. In conclusion, our in vivo studies provide strong evidence that phosphorylation of the seven serine and threonine residues in the KHD of Npr2 is an important regulatory element of Npr2-mediated cGMP signaling which affects physiological processes, such as axon bifurcation and bone growth.SIGNIFICANCE STATEMENT The branching of axons is a morphological hallmark of virtually all neurons. It allows an individual neuron to innervate different targets and to communicate with neurons located in different regions of the nervous system. The natriuretic peptide receptor 2 (Npr2), a transmembrane guanylyl cyclase, is essential for the initiation of bifurcation of sensory axons when entering the spinal cord or the hindbrain. By using two genetically engineered mouse lines, we show that phosphorylation of specific serine and threonine residues in juxtamembrane regions of Npr2 are required for its enzymatic activity and for axon bifurcation. These investigations might help to understand the regulation of Npr2 and its integration in intracellular signaling systems.


Subject(s)
Axons/physiology , Ganglia, Sensory/physiology , Receptors, Atrial Natriuretic Factor/physiology , Serine/metabolism , Threonine/metabolism , Animals , Female , Ganglia, Spinal/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphorylation/physiology , Pregnancy , Sensory Receptor Cells/physiology , Serine/genetics , Threonine/genetics
5.
J Biol Chem ; 292(24): 10220-10229, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28450398

ABSTRACT

Activating mutations in the receptor for C-type natriuretic peptide (CNP), guanylyl cyclase B (GC-B, also known as Npr2 or NPR-B), increase cellular cGMP and cause skeletal overgrowth, but how these mutations affect GTP catalysis is poorly understood. The A488P and R655C mutations were compared with the known mutation V883M. Neither mutation affected GC-B concentrations. The A488P mutation decreased the EC50 5-fold, increased Vmax 2.6-fold, and decreased the Km 13-fold, whereas the R655C mutation decreased the EC50 5-fold, increased the Vmax 2.1-fold, and decreased the Km 4.7-fold. Neither mutation affected maximum activity at saturating CNP concentrations. Activation by R655C did not require disulfide bond formation. Surprisingly, the A488P mutant only activated the receptor when it was phosphorylated. In contrast, the R655C mutation converted GC-B-7A from CNP-unresponsive to CNP-responsive. Interestingly, neither mutant was activated by ATP, and the Km and Hill coefficient of each mutant assayed in the absence of ATP were similar to those of wild-type GC-B assayed in the presence of ATP. Finally, 1 mm 2,4,6,-trinitrophenyl ATP inhibited all three mutants by as much as 80% but failed to inhibit WT-GC-B. We conclude that 1) the A488P and R655C missense mutations result in a GC-B conformation that mimics the allosterically activated conformation, 2) GC-B phosphorylation is required for CNP-dependent activation by the A488P mutation, 3) the R655C mutation abrogates the need for phosphorylation in receptor activation, and 4) an ATP analog selectively inhibits the GC-B mutants, indicating that a pharmacologic approach could reduce GC-B dependent human skeletal overgrowth.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Bone Diseases, Developmental/genetics , Enzyme Inhibitors/pharmacology , Models, Molecular , Mutation , Natriuretic Peptide, C-Type/metabolism , Receptors, Atrial Natriuretic Factor/antagonists & inhibitors , Adenosine Triphosphate/pharmacology , Allosteric Regulation , Amino Acid Substitution , Bone Diseases, Developmental/metabolism , Cyclic GMP/metabolism , Guanosine Triphosphate/metabolism , HEK293 Cells , Humans , Kinetics , Mutagenesis, Site-Directed , Mutation, Missense , Phosphorylation , Protein Conformation , Protein Processing, Post-Translational , Receptors, Atrial Natriuretic Factor/chemistry , Receptors, Atrial Natriuretic Factor/genetics , Receptors, Atrial Natriuretic Factor/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
6.
Mol Pharmacol ; 92(1): 67-74, 2017 07.
Article in English | MEDLINE | ID: mdl-28416574

ABSTRACT

Multisite phosphorylation is required for activation of guanylyl cyclase (GC)-A, also known as NPR-A or NPR1, by cardiac natriuretic peptides (NPs). Seven chemically identified sites (Ser-487, Ser-497, Thr-500, Ser-502, Ser-506, Ser-510, and Thr-513) and one functionally identified putative site (Ser-473) were reported. Single alanine substitutions for Ser-497, Thr-500, Ser-502, Ser-506, and Ser-510 reduced maximal velocity (Vmax), whereas glutamate substitutions had no effect or increased Vmax Ala but not Glu substitution for Ser-497 increased the Michaelis constant (Km) approximately 400%. A GC-A mutant containing Glu substitutions for all seven chemically identified sites (GC-A-7E) had a Km approximately 10-fold higher than phosphorylated wild-type (WT) GC-A, but one additional substitution for Ser-473 to make GC-A-8E resulted in the same Vmax, Km, and EC50 as the phosphorylated WT enzyme. Adding more glutamates to make GC-A-9E or GC-A-10E had little effect on activity, and sequential deletion of individual glutamates in GC-A-8E progressively increased the Km Double Ala substitutions for Ser-497 and either Thr-500, Ser-510 or Thr-513 in WT-GC-A increased the Km 23- to 70-fold but the same mutations in GC-A-8E only increased the Km 8-fold, consistent with one site affecting the phosphorylation of other sites. Phosphate measurements confirmed that single-site Ala substitutions reduced receptor phosphate levels more than expected for the loss of a single site. We conclude that a concentrated region of negative charge, not steric properties, resulting from multiple interdependent phosphorylation sites is required for a GC-A conformation capable of transmitting the hormone binding signal to the catalytic domain.


Subject(s)
Glutamic Acid/genetics , Glutamic Acid/metabolism , Guanylate Cyclase/genetics , Guanylate Cyclase/metabolism , Mutation/physiology , Amino Acid Sequence , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Activation/physiology , Glutamic Acid/pharmacology , HEK293 Cells , Humans , Phosphorylation/drug effects , Phosphorylation/physiology
7.
J Biol Chem ; 291(21): 11385-93, 2016 May 20.
Article in English | MEDLINE | ID: mdl-26980729

ABSTRACT

C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism.


Subject(s)
Guanylate Cyclase/chemistry , Receptors, Atrial Natriuretic Factor/genetics , Animals , Dwarfism/metabolism , Endoplasmic Reticulum/metabolism , Glycosylation , Humans , Mutation
8.
Dev Biol ; 409(1): 194-201, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26522847

ABSTRACT

The meiotic cell cycle of mammalian oocytes starts during embryogenesis and then pauses until luteinizing hormone (LH) acts on the granulosa cells of the follicle surrounding the oocyte to restart the cell cycle. An essential event in this process is a decrease in cyclic GMP in the granulosa cells, and part of the cGMP decrease results from dephosphorylation and inactivation of the natriuretic peptide receptor 2 (NPR2) guanylyl cyclase, also known as guanylyl cyclase B. However, it is unknown whether NPR2 dephosphorylation is essential for LH-induced meiotic resumption. Here, we prevented NPR2 dephosphorylation by generating a mouse line in which the seven regulatory serines and threonines of NPR2 were changed to the phosphomimetic amino acid glutamate (Npr2-7E). Npr2-7E/7E follicles failed to show a decrease in enzyme activity in response to LH, and the cGMP decrease was attenuated; correspondingly, LH-induced meiotic resumption was delayed. Meiotic resumption in response to EGF receptor activation was likewise delayed, indicating that NPR2 dephosphorylation is a component of the pathway by which EGF receptor activation mediates LH signaling. We also found that most of the NPR2 protein in the follicle was present in the mural granulosa cells. These findings indicate that NPR2 dephosphorylation in the mural granulosa cells is essential for the normal progression of meiosis in response to LH and EGF receptor activation. In addition, these studies provide the first demonstration that a change in phosphorylation of a transmembrane guanylyl cyclase regulates a physiological process, a mechanism that may also control other developmental events.


Subject(s)
Luteinizing Hormone/pharmacology , Meiosis/drug effects , Oocytes/cytology , Oocytes/enzymology , Receptors, Atrial Natriuretic Factor/metabolism , Serine/metabolism , Threonine/metabolism , Animals , Cyclic GMP/metabolism , Epiregulin/pharmacology , Female , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Guanylate Cyclase/metabolism , Mice , Phosphorylation/drug effects , Sheep
9.
Bone ; 56(2): 375-82, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23827346

ABSTRACT

C-type natriuretic peptide (CNP) increases long bone growth by stimulating guanylyl cyclase (GC)-B/NPR-B/NPR2. Recently, a Val to Met missense mutation at position 883 in the catalytic domain of GC-B was identified in humans with increased blood cGMP levels that cause abnormally long bones. Here, we determined how this mutation activates GC-B. In the absence of CNP, cGMP levels in cells expressing V883M-GC-B were increased more than 20 fold compared to cells expressing wild-type (WT)-GC-B, and the addition of CNP only further increased cGMP levels 2-fold. In the absence of CNP, maximal enzymatic activity (Vmax) of V883M-GC-B was increased 15-fold compared to WT-GC-B but the affinity of the enzymes for substrate as revealed by the Michaelis constant (Km) was unaffected. Surprisingly, CNP decreased the Km of V883M-GC-B 10-fold in a concentration-dependent manner without increasing Vmax. Unlike the WT enzyme the Km reduction of V883M-GC-B did not require ATP. Unexpectedly, V883M-GC-B, but not WT-GC-B, failed to inactivate with time. Phosphorylation elevated but was not required for the activity increase associated with the mutation because the Val to Met substitution also activated a GC-B mutant lacking all known phosphorylation sites. We conclude that the V883M mutation increases maximal velocity in the absence of CNP, eliminates the requirement for ATP in the CNP-dependent Km reduction, and disrupts the normal inactivation process.


Subject(s)
Bone Development/physiology , Receptors, Atrial Natriuretic Factor/metabolism , Blotting, Western , Bone Development/genetics , Cell Line , Cyclic GMP/metabolism , Humans , Mutation , Natriuretic Peptide, C-Type/genetics , Natriuretic Peptide, C-Type/metabolism , Phosphorylation/genetics , Phosphorylation/physiology , Receptors, Atrial Natriuretic Factor/genetics
10.
PLoS One ; 7(5): e36747, 2012.
Article in English | MEDLINE | ID: mdl-22590601

ABSTRACT

Kinase homology domain (KHD) phosphorylation is required for activation of guanylyl cyclase (GC)-A and -B. Phosphopeptide mapping identified multiple phosphorylation sites in GC-A and GC-B, but these approaches have difficulty identifying sites in poorly detected peptides. Here, a functional screen was conducted to identify novel sites. Conserved serines or threonines in the KHDs of phosphorylated receptor GCs were mutated to alanine and tested for reduced hormone to detergent activity ratios. Mutation of Ser-489 in GC-B to alanine but not glutamate reduced the activity ratio to 60% of wild type (WT) levels. Similar results were observed with Ser-473, the homologous site in GC-A. Receptors containing glutamates for previously identified phosphorylation sites (GC-A-6E and GC-B-6E) were activated to ~20% of WT levels but the additional glutamate substitution for S473 or S489 increased activity to near WT levels. Substrate-velocity assays indicated that GC-B-WT-S489E and GC-B-6E-S489E had lower Km values and that WT-GC-B-S489A, GC-B-6E and GC-B-6E-S489A had higher Km values than WT-GC-B. Homologous desensitization was enhanced when GC-A contained the S473E substitution, and GC-B-6E-S489E was resistant to inhibition by a calcium elevating treatment or protein kinase C activation--processes that dephosphorylate GC-B. Mass spectrometric detection of a synthetic phospho-Ser-473 containing peptide was 200-1300-fold less sensitive than other phosphorylated peptides and neither mass spectrometric nor (32)PO(4) co-migration studies detected phospho-Ser-473 or phospho-Ser-489 in cells. We conclude that Ser-473 and Ser-489 are Km-regulating phosphorylation sites that are difficult to detect using current methods.


Subject(s)
Receptors, Atrial Natriuretic Factor/metabolism , Amino Acid Substitution , Animals , Cell Line , Humans , Mutation, Missense , Peptide Mapping/methods , Peptides/genetics , Peptides/metabolism , Phosphorylation/physiology , Protein Structure, Tertiary/physiology , Rats , Receptors, Atrial Natriuretic Factor/genetics
11.
J Mol Cell Cardiol ; 52(3): 727-32, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22133375

ABSTRACT

Cardiomyocytes release atrial natriuretic peptide (ANP) and B-type natriuretic peptide to stimulate processes that compensate for the failing heart by activating guanylyl cyclase (GC)-A. C-type natriuretic peptide is also elevated in the failing heart and inhibits cardiac remodeling by activating the homologous receptor, GC-B. We previously reported that GC-A is the most active membrane GC in normal mouse ventricles while GC-B is the most active membrane GC in failing ventricles due to increased GC-B and decreased GC-A activities. Here, we examined ANP and CNP-specific GC activity in membranes obtained from non-failing and failing human left ventricles and in membranes from matched cardiomyocyte-enriched pellet preparations. Similar to our findings in the murine study, we found that CNP-dependent GC activity was about half of the ANP-dependent GC activity in the non-failing ventricular and was increased in the failing ventricle. ANP and CNP increased GC activity 9- and 5-fold in non-failing ventricles, respectively. In contrast to the mouse study, in failing human ventricles, ANP-dependent activity was unchanged compared to non-failing values whereas CNP-dependent activity increased 35% (p=0.005). Compared with ventricular membranes, basal GC activity was reduced an order of magnitude in membranes derived from myocyte-enriched pellets from non-failing ventricles. ANP increased GC activity 2.4-fold but CNP only increased GC activity 1.3-fold. In contrast, neither ANP nor CNP increased GC activity in equivalent preparations from failing ventricles. We conclude that: 1) GC-B activity is increased in non-myocytes from failing human ventricles, possibly as a result of increased fibrosis, 2) human ventricular cardiomyocytes express low levels of GC-A and much lower levels or possibly no GC-B, and 3) GC-A in cardiomyocytes from failing human hearts is refractory to ANP stimulation.


Subject(s)
Heart Failure/enzymology , Heart Ventricles/enzymology , Myocytes, Cardiac/enzymology , Receptors, Atrial Natriuretic Factor/metabolism , Adult , Aged , Aged, 80 and over , Atrial Natriuretic Factor/metabolism , Enzyme Activation , Female , Humans , Male , Membrane Proteins/metabolism , Middle Aged , Natriuretic Peptide, C-Type/metabolism , Young Adult
12.
Clin Chem ; 57(9): 1272-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21768217

ABSTRACT

BACKGROUND: B-type natriuretic peptide (BNP) compensates for the failing heart and is synthesized as a 108-residue prohormone that is cleaved to a 32-residue C-terminal maximally active peptide. During heart failure, serum concentrations of proBNP(1-108) exceed concentrations of BNP(1-32). The aim of this study was to determine why the proBNP(1-108)/BNP(1-32) ratio increases and whether proBNP(1-108) is bioactive. METHODS: Using cGMP elevation and (125)I-ANP binding assays, we measured binding and activation of individual human natriuretic peptide receptor populations by recombinant human proBNP(1-108) and human synthetic BNP(1-32). Using receptor bioassays, we measured degradation of recombinant proBNP(1-108) and BNP(1-32) by human kidney membranes. RESULTS: ProBNP(1-108) stimulated guanylyl cyclase-A (GC-A) to near-maximum activities but was 13-fold less potent than BNP(1-32). ProBNP(1-108) bound human GC-A 35-fold less tightly than BNP(1-32). Neither proBNP(1-108) nor BNP(1-32) activated GC-B. The natriuretic peptide clearance receptor bound proBNP(1-108) 3-fold less tightly than BNP(1-32). The half time for degradation of proBNP(1-108) by human kidney membranes was 2.7-fold longer than for BNP(1-32), and the time required for complete degradation was 6-fold longer. BNP(1-32) and proBNP(1-108) were best fitted by first- and second-order exponential decay models, respectively. CONCLUSIONS: ProBNP(1-108) activates GC-A with reduced potency and is resistant to degradation. Reduced degradation of proBNP(1-108) may contribute to the increased ratio of serum proBNP(1-108) to BNP(1-32) observed in patients with congestive heart failure.


Subject(s)
Natriuretic Peptide, Brain/metabolism , Peptide Fragments/metabolism , Protein Precursors/metabolism , Receptors, Atrial Natriuretic Factor/metabolism , Cyclic GMP/metabolism , Enzyme Activation , HEK293 Cells , Humans , In Vitro Techniques , Kidney/metabolism , Protein Binding
13.
J Mol Cell Cardiol ; 51(1): 67-71, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21459096

ABSTRACT

Designer natriuretic peptides (NPs) represent an active area of drug development. In canine and human studies, the designer natriuretic peptide CD-NP demonstrated more desirable therapeutic potential than recombinant B-type NP (BNP), which is known as nesiritide and is approved for treatment of acute decompensated heart failure. However, why CD-NP is more effective than BNP is not known. We previously reported that CD-NP is a poorer activator of human guanylyl cyclase-A (GC-A) and a better activator of human guanylyl cyclase-B than BNP. Here, guanylyl cyclase bioassays were used to compare the susceptibility of CD-NP verses ANP, BNP, CNP and DNP to inactivation by human kidney membranes. The half time (t(1/2)) for CD-NP inactivation was increased by factors of 13, 3 and 4 compared to ANP, BNP and CNP, respectively, when measured in the same assay. Surprisingly, DNP failed to undergo complete inactivation and was the most degradation resistant of the peptides tested. The neutral endopeptidase (NEP) inhibitor, phosphoramidon, blocked inactivation of CNP and CD-NP, but not BNP or DNP. In contrast, the general serine and cysteine protease inhibitor, leupeptin, completely blocked the degradation of BNP and CD-NP, but did not block CNP inactivation unless phosphoramidon was included in the assay. Thus, NPs with shorter carboxyl tails (ANP and CNP) are degraded by phosphoramidon-sensitive proteases and NPs with extended carboxyl tails (BNP, DNP and CD-NP) are resistant to NEP degradation and degraded by leupeptin-sensitive proteases. We conclude that DNP and CD-NP are highly resistant to proteolysis and that proteolytic resistance contributes to the beneficial cardiovascular properties of CD-NP. We suggest that this property may be exploited to increase the half-life of NP-based drugs.


Subject(s)
Atrial Natriuretic Factor/metabolism , Elapid Venoms/metabolism , Natriuretic Peptide, Brain/metabolism , Natriuretic Peptide, C-Type/metabolism , Peptides/metabolism , Atrial Natriuretic Factor/pharmacology , Cells, Cultured , Cysteine Proteinase Inhibitors/pharmacology , Elapid Venoms/pharmacology , Glycopeptides/pharmacology , HEK293 Cells , Humans , Hydrolysis , Intercellular Signaling Peptides and Proteins , Kidney/metabolism , Leupeptins/pharmacology , Natriuretic Peptide, Brain/pharmacology , Natriuretic Peptide, C-Type/pharmacology , Neprilysin/antagonists & inhibitors , Peptides/pharmacology , Receptors, Atrial Natriuretic Factor/metabolism , Serine Proteinase Inhibitors/pharmacology
14.
Mol Pharmacol ; 80(1): 155-62, 2011 07.
Article in English | MEDLINE | ID: mdl-21498657

ABSTRACT

Atrial natriuretic peptide (ANP) binds guanylyl cyclase-A (GC-A) and natriuretic peptide receptor-C (NPR-C). Internalization of GC-A and NPR-C is poorly understood, in part, because previous studies used (125)I-ANP binding to track these receptors, which are expressed in the same cell. Here, we evaluated GC-A and NPR-C internalization using traditional and novel approaches. Although HeLa cells endogenously express GC-A, (125)I-ANP binding and cross-linking studies only detected NPR-C, raising the possibility that past studies ascribed NPR-C-mediated processes to GC-A. To specifically measure internalization of a single receptor, we developed an (125)I-IgG-binding assay that tracks extracellular FLAG-tagged versions of GC-A and NPR-C independently of each other and ligand for the first time. FLAG-GC-A bound ANP identically with wild-type GC-A and was internalized slowly (0.5%/min), whereas FLAG-NPR-C was internalized rapidly (2.5%/min) in HeLa cells. In 293 cells, (125)I-ANP and (125)I-IgG uptake curves were superimposable because these cells only express a single ANP receptor. Basal internalization of both receptors was 8-fold higher in 293 compared with HeLa cells and ANP did not increase internalization of FLAG-GC-A. For FLAG-NPR-C, neither ANP, BNP, nor CNP increased its internalization in either cell line. Prolonged ANP exposure concomitantly reduced surface and total GC-A levels, consistent with rapid exchange of extracellular and intracellular receptor pools. We conclude that ligand binding does not stimulate natriuretic peptide receptor internalization and that cellular environment determines the rate of this process. We further deduce that NPR-C is internalized faster than GC-A and that increased internalization is not required for GC-A down-regulation.


Subject(s)
Antibodies/immunology , Guanylate Cyclase/immunology , Receptors, Atrial Natriuretic Factor/immunology , HeLa Cells , Humans , Iodine Radioisotopes , Ligands , Plasmids
15.
J Biol Chem ; 286(6): 4670-9, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21098034

ABSTRACT

Natriuretic peptides (NPs) are cyclic vasoactive peptide hormones with high therapeutic potential. Three distinct NPs (ANP, BNP, and CNP) can selectively activate natriuretic peptide receptors, NPR-A and NPR-B, raising the cyclic GMP (cGMP) levels. Insulin-degrading enzyme (IDE) was found to rapidly cleave ANP, but the functional consequences of such cleavages in the cellular environment and the molecular mechanism of recognition and cleavage remain unknown. Here, we show that reducing expression levels of IDE profoundly alters the response of NPR-A and NPR-B to the stimulation of ANP, BNP, and CNP in cultured cells. IDE rapidly cleaves ANP and CNP, thus inactivating their ability to raise intracellular cGMP. Conversely, reduced IDE expression enhances the stimulation of NPR-A and NPR-B by ANP and CNP, respectively. Instead of proteolytic inactivation, IDE cleavage can lead to hyperactivation of BNP toward NPR-A. Conversely, decreasing IDE expression reduces BNP-mediated signaling. Additionally, the cleavages of ANP and BNP by IDE render them active with NPR-B and a reduction of IDE expression diminishes the ability of ANP and BNP to stimulate NPR-B. Our kinetic and crystallographic analyses offer the molecular basis for the selective degradation of NPs and their variants by IDE. Furthermore, our studies reveal how IDE utilizes its catalytic chamber and exosite to engulf and bind up to two NPs leading to biased stochastic, non-sequential cleavages and the ability of IDE to switch its substrate selectivity. Thus, the evolutionarily conserved IDE may play a key role in modulating and reshaping the strength and duration of NP-mediated signaling.


Subject(s)
Gene Expression Regulation, Enzymologic/physiology , Insulysin/chemistry , Insulysin/metabolism , Natriuretic Peptides/metabolism , Signal Transduction/physiology , Catalysis , Crystallography, X-Ray , Cyclic GMP/genetics , Cyclic GMP/metabolism , HEK293 Cells , Humans , Insulysin/genetics , Natriuretic Peptides/genetics , Protein Binding , Protein Structure, Tertiary
16.
Biochem Pharmacol ; 80(7): 1007-11, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20599787

ABSTRACT

B-type natriuretic peptide (BNP) combats cardiac stress by reducing blood pressure and ventricular fibrosis. Human BNP is inactivated by unknown cell surface proteases. N-terminal cleavage of mouse BNP by the renal protease meprin A was reported to increase inactivating degradation by a second protease named neprilysin. Since the sequence surrounding the meprin A cleavage site in BNP differs between species, we tested whether meprin A degrades human BNP. Using a recently developed proteolytic bioassay, the ability of various protease inhibitors to block the inactivation of BNP was measured. In rat kidney membranes, inhibitors of meprin A or neprilysin partially or completely blocked inactivation of rat BNP(1-32) when added individually or in combination, respectively. In contrast, neither inhibitor alone or in combination prevented the inactivation of human BNP(1-32) by human kidney membranes. Leupeptin, a serine protease inhibitor, totally blocked inactivation of human BNP by human membranes, substantially blocked the inactivation of rat BNP(1-32) by human membranes, but had no effect on the inactivation of rat BNP(1-32) by rat kidney membranes. Purified neprilysin reduced the bioactivity of rat BNP(1-32) and human BNP. Digestion with both meprin and neprilysis caused the greatest reduction in rat BNP(1-32) but had no effect on the bioactivity of human BNP(1-32). We conclude that meprin A does not degrade BNP in humans and should not be considered a pharmacologic target of the natriuretic peptide system.


Subject(s)
Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/metabolism , Animals , Blood Pressure/drug effects , Endopeptidases/metabolism , Endopeptidases/pharmacology , Humans , Hydrolysis , Kidney/metabolism , Leupeptins , Metalloendopeptidases , Natriuretic Peptide, Brain/pharmacology , Neprilysin/antagonists & inhibitors , Neprilysin/metabolism , Neprilysin/pharmacology , Peptide Hydrolases/metabolism , Peptide Hydrolases/pharmacology , Protease Inhibitors/metabolism , Rats , Serine Proteases
17.
Mol Pharmacol ; 78(3): 431-5, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20530652

ABSTRACT

B-type natriuretic peptide (BNP) decreases cardiac preload and hypertrophy. As such, synthetic BNP, nesiritide, was approved for the treatment of acutely decompensated heart failure. However, two problems limit its therapeutic potential. First, ensuing hypertension decreases urine output, and second, guanylyl cyclase-A (GC-A), the primary signaling receptor for BNP, is down-regulated in heart failure. Thus, alternative or chimeric natriuretic peptides maintaining the renal but lacking the vasorelaxation properties of BNP provide an alternative approach. Here, we examined the ability of single amino acid substitutions in the conserved 17-amino acid disulfide ring structure of human BNP to activate GC-A and guanylyl cyclase-B (GC-B), which is not reduced in heart failure. We hypothesized that substitution of highly conserved residues in BNP with highly conserved residues from a GC-B-specific peptide would yield BNP variants with increased and decreased potency for human GC-B and GC-A, respectively. Substitution of Leu for Arg13 (l-bnp) yielded a 5-fold more potent activator of GC-B and 7-fold less potent activator of GC-A compared with wild type. l-bnp also bound GC-A 4.5-fold less tightly than wild type. In contrast, substitution of Met for Ser21 (M-BNP) had no effect. A peptide containing both the Leu and Met substitutions behaved similarly to l-bnp. Meanwhile, wild-type and l-bnp bound the natriuretic peptide clearance receptor with similar affinities. These data indicate that Arg13 of BNP is a critical discriminator of binding to guanylyl cyclase-linked but not clearance natriuretic peptide receptors, supporting designer natriuretic peptides as an alternative to wild-type BNP for the treatment of heart failure.


Subject(s)
Guanylate Cyclase/metabolism , Guanylate Cyclase/physiology , Natriuretic Peptide, Brain/metabolism , Natriuretic Peptide, Brain/physiology , Down-Regulation , Guanylate Cyclase/genetics , Heart Failure/genetics , Heart Failure/metabolism , Humans , Hypertension/genetics , Hypertension/metabolism , Hypertrophy/genetics , Kidney/metabolism , Natriuretic Peptide, Brain/genetics , Natriuretic Peptides/genetics , Natriuretic Peptides/metabolism , Peptides/genetics , Peptides/metabolism , Receptors, Atrial Natriuretic Factor , Receptors, Peptide/genetics , Receptors, Peptide/metabolism
18.
Proc Natl Acad Sci U S A ; 106(27): 11282-7, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19541613

ABSTRACT

Alternative RNA splicing may provide unique opportunities to identify drug targets and therapeutics. We identified an alternative spliced transcript for B-type natriuretic peptide (BNP) resulting from intronic retention. This transcript is present in failing human hearts and is reduced following mechanical unloading. The intron-retained transcript would generate a unique 34 amino acid (aa) carboxyl terminus while maintaining the remaining structure of native BNP. We generated antisera to this carboxyl terminus and identified immunoreactivity in failing human heart tissue. The alternatively spliced peptide (ASBNP) was synthesized and unlike BNP, failed to stimulate cGMP in vascular cells or vasorelax preconstricted arterial rings. This suggests that ASBNP may lack the dose-limiting effects of recombinant BNP. Given structural considerations, a carboxyl-terminal truncated form of ASBNP was generated (ASBNP.1) and was determined to retain the ability of BNP to stimulate cGMP in canine glomerular isolates and cultured human mesangial cells but lacked similar effects in vascular cells. In a canine-pacing model of heart failure, systemic infusion of ASBNP.1 did not alter mean arterial pressure but increased the glomerular filtration rate (GFR), suppressed plasma renin and angiotensin, while inducing natriuresis and diuresis. Consistent with its distinct in vivo effects, the activity of ASBNP.1 may not be explained through binding and activation of NPR-A or NPR-B. Thus, the biodesigner peptide ASBNP.1 enhances GFR associated with heart failure while lacking the vasoactive properties of BNP. These findings demonstrate that peptides with unique properties may be designed based on products of alternatively splicing.


Subject(s)
Alternative Splicing/drug effects , Drug Design , Kidney/drug effects , Natriuretic Peptide, Brain/genetics , Peptides/pharmacology , Amino Acid Sequence , Animals , Cattle , Dogs , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/pathology , Humans , Molecular Sequence Data , Natriuretic Peptide, Brain/chemistry , Natriuretic Peptide, Brain/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Atrial Natriuretic Factor/metabolism
19.
J Biol Chem ; 284(29): 19196-202, 2009 Jul 17.
Article in English | MEDLINE | ID: mdl-19458086

ABSTRACT

A heterozygous frameshift mutation causing a 12-amino acid extension to the C terminus of atrial natriuretic peptide (ANP) was recently genetically linked to patients with familial atrial fibrillation (Hodgson-Zingman, D. M., Karst, M. L., Zingman, L. V., Heublein, D. M., Darbar, D., Herron, K. J., Ballew, J. D., de Andrade, M., Burnett, J. C., Jr., and Olson, T. M. (2008) N. Engl. J. Med. 359, 158-165). The frameshift product (fsANP), but not wild-type ANP (wtANP), was elevated in the serum of affected patients, but the molecular basis for the elevated peptide concentrations was not determined. Here, we measured the ability of fsANP to interact with natriuretic peptide receptors and to be proteolytically degraded. fsANP and wtANP bound and activated human NPR-A and NPR-C similarly, whereas fsANP had a slightly increased efficacy for human NPR-B. Proteolytic susceptibility was addressed with novel bioassays that measure the time required for kidney membranes or purified neutral endopeptidase to abolish ANP-dependent activation of NPR-A. The half-life of fsANP was markedly greater than that of wtANP in both assays. Additional membrane proteolysis studies indicated that wtANP and fsANP are preferentially degraded by neutral endopeptidase and serine peptidases, respectively. These data indicate that the familial ANP mutation associated with atrial fibrillation has only minor effects on natriuretic peptide receptor interactions but markedly modifies peptide proteolysis.


Subject(s)
Atrial Natriuretic Factor/metabolism , Mutant Proteins/metabolism , Mutation , Receptors, Atrial Natriuretic Factor/metabolism , Amino Acid Sequence , Animals , Atrial Natriuretic Factor/blood , Atrial Natriuretic Factor/genetics , Binding, Competitive , Cell Line , Cyclic GMP/metabolism , Family Health , Humans , Hydrolysis , Molecular Sequence Data , Mutant Proteins/blood , Neprilysin/metabolism , Protein Binding , Rats , Receptors, Atrial Natriuretic Factor/genetics , Serine Endopeptidases/metabolism
20.
Handb Exp Pharmacol ; (191): 341-66, 2009.
Article in English | MEDLINE | ID: mdl-19089336

ABSTRACT

Natriuretic peptides are a family of three structurally related hormone/ paracrine factors. Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) are secreted from the cardiac atria and ventricles, respectively. ANP signals in an endocrine and paracrine manner to decrease blood pressure and cardiac hypertrophy. BNP acts locally to reduce ventricular fibrosis. C-type natriuretic peptide (CNP) primarily stimulates long bone growth but likely serves unappreciated functions as well. ANP and BNP activate the transmembrane guanylyl cyclase, natriuretic peptide receptor-A (NPR-A). CNP activates a related cyclase, natriuretic peptide receptor-B (NPR-B). Both receptors catalyze the synthesis of cGMP, which mediates most known effects of natriuretic peptides. A third natriuretic peptide receptor, natriuretic peptide receptor-C (NPR-C), clears natriuretic peptides from the circulation through receptor-mediated internalization and degradation. However, a signaling function for the receptor has been suggested as well. Targeted disruptions of the genes encoding all natriuretic peptides and their receptors have been generated in mice, which display unique physiologies. A few mutations in these proteins have been reported in humans. Synthetic analogs of ANP (anaritide and carperitide) and BNP (nesiritide) have been investigated as potential therapies for the treatment of decompensated heart failure and other diseases. Anaritide and nesiritide are approved for use in acute decompensated heart failure, but recent studies have cast doubt on their safety and effectiveness. New clinical trials are examining the effect of nesiritide and novel peptides, like CD-NP, on these critical parameters. In this review, the history, structure, function, and clinical applications of natriuretic peptides and their receptors are discussed.


Subject(s)
Natriuretic Agents/pharmacology , Natriuretic Peptides/metabolism , Receptors, Atrial Natriuretic Factor/metabolism , Amino Acid Sequence , Animals , Atrial Natriuretic Factor/pharmacology , History, 20th Century , Humans , Natriuretic Peptide, Brain/pharmacology , Natriuretic Peptides/history , Natriuretic Peptides/pharmacology , Peptide Fragments/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...