Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochimie ; 198: 76-85, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35341928

ABSTRACT

Macrophages play a pivotal role in atherosclerosis through a variety of events related to cellular oxidative stress. This process is mainly due to an excessive production of reactive oxygen species whose elimination occurs through antioxidant systems including the thioredoxin (Trx) system. In this paper, we investigated whether the Trx system would exhibit circadian rhythmicity in dexamethasone synchronized cultured macrophages and monitored the impact of the rhythmicity of Trx-1 on markers of atherosclerosis. We found that the clock-related genes BMAL-1, PER-2, CRY-1 and REV ERB α exhibited a robust circadian expression. However, the Trx genes family (Trx-1, Trx-2, TrxR1 and TXNIP) did not exhibit a circadian expression at the mRNA level in spite of the presence of E-box elements within the promoter regions of TrxR1 and TXNIP genes. Nevertheless, both Trx-1 and TXNIP exhibited a circadian expression at the protein level and proteasome inhibition abolished the rhythmicity of Trx-1. Moreover, we found a link between low Trx-1 level and elevated atherogenic markers such as 4-HNE, TNF-α and cholesterol accumulation in macrophages. Our results indicate that the Trx gene family does not exhibit the same circadian regulation and that the presence of E-box elements in the TXNIP promoter is not sufficient to ensure a circadian rhythmicity at the transcriptional level. In addition, since a link was found between a low level of Trx-1 protein during circadian rhythm and high levels of atherogenic markers, administration of Trx-1 at certain time points could be an interesting approach to protect against atherosclerosis development.


Subject(s)
Atherosclerosis , Macrophages, Peritoneal , Animals , Circadian Rhythm , Macrophages, Peritoneal/metabolism , Mice , Oxidative Stress , Thioredoxins/genetics , Thioredoxins/metabolism
2.
Antimicrob Agents Chemother ; 42(5): 1115-20, 1998 May.
Article in English | MEDLINE | ID: mdl-9593137

ABSTRACT

To develop a fully supervisable, monthly administered regimen for treatment of leprosy, the bactericidal effect of a single-dose combination of ofloxacin (OFLO) and minocycline (MINO), with or without rifampin (RMP), against Mycobacterium leprae was studied in the mouse footpad system and in previously untreated lepromatous leprosy patients. Bactericidal activity was measured by the proportional bactericidal method. In mouse experiments, the activity of a single dose of the combination OFLO-MINO was dosage related; the higher dosage of the combination displayed bactericidal activity which was significantly inferior to that of a single dose of RMP, whereas the lower dosage did not exhibit a bactericidal effect. In the clinical trial, 20 patients with previously untreated lepromatous leprosy were treated with a single dose consisting of either 600 mg of RMP plus 400 mg of OFLO and 100 mg of MINO or 400 mg of OFLO plus 100 mg of MINO. The OFLO-MINO combination exhibited definite bactericidal activity in 7 of 10 patients but was less bactericidal than the RMP-OFLO-MINO combination. Both combinations were well tolerated. Because of these promising results, a test of the efficacy of multiple doses of ROM in a larger clinical trial appears justified.


Subject(s)
Drug Therapy, Combination/therapeutic use , Leprostatic Agents/therapeutic use , Leprosy/drug therapy , Mycobacterium leprae/drug effects , Adolescent , Adult , Animals , Drug Therapy, Combination/adverse effects , Female , Humans , Leprostatic Agents/adverse effects , Male , Mice , Mice, Nude , Middle Aged , Minocycline/administration & dosage , Minocycline/adverse effects , Ofloxacin/administration & dosage , Ofloxacin/adverse effects , Rifampin/administration & dosage , Rifampin/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...