Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Med Chem ; 57(17): 7412-24, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25100568

ABSTRACT

The synthesis and characterization of a series of selective, orally bioavailable 1-(chroman-4-yl)urea TRPV1 antagonists is described. Whereas first-generation antagonists that inhibit all modes of TRPV1 activation can elicit hyperthermia, the compounds disclosed herein do not elevate core body temperature in preclinical models and only partially block acid activation of TRPV1. Advancing the SAR of this series led to the eventual identification of (R)-1-(7-chloro-2,2-bis(fluoromethyl)chroman-4-yl)-3-(3-methylisoquinolin-5-yl)urea (A-1165442, 52), an analogue that possesses excellent pharmacological selectivity, has a favorable pharmacokinetic profile, and demonstrates good efficacy against osteoarthritis pain in rodents.


Subject(s)
Analgesics/chemistry , Body Temperature/drug effects , TRPV Cation Channels/antagonists & inhibitors , Urea/chemistry , Analgesics/pharmacokinetics , Analgesics/pharmacology , Animals , Area Under Curve , Body Temperature/physiology , Dogs , Dose-Response Relationship, Drug , Drug Discovery , HEK293 Cells , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacokinetics , Isoquinolines/pharmacology , Metabolic Clearance Rate , Models, Chemical , Molecular Structure , Rats , Structure-Activity Relationship , TRPV Cation Channels/chemistry , TRPV Cation Channels/metabolism , Urea/analogs & derivatives , Urea/pharmacokinetics , Urea/pharmacology
2.
Pain ; 152(5): 1165-1172, 2011 May.
Article in English | MEDLINE | ID: mdl-21402443

ABSTRACT

Despite the increasing interest in TRPA1 channel as a pain target, its role in cold sensation and body temperature regulation is not clear; the efficacy and particularly side effects resulting from channel blockade remain poorly understood. Here we use a potent, selective, and bioavailable antagonist to address these issues. A-967079 potently blocks human (IC(50): 51 nmol/L, electrophysiology, 67 nmol/L, Ca(2+) assay) and rat TRPA1 (IC(50): 101 nmol/L, electrophysiology, 289 nmol/L, Ca(2+) assay). It is >1000-fold selective over other TRP channels, and is >150-fold selective over 75 other ion channels, enzymes, and G-protein-coupled receptors. Oral dosing of A-967079 produces robust drug exposure in rodents, and exhibits analgesic efficacy in allyl isothiocyanate-induced nocifensive response and osteoarthritic pain in rats (ED(50): 23.2 mg/kg, p.o.). A-967079 attenuates cold allodynia produced by nerve injury but does not alter noxious cold sensation in naive animals, suggesting distinct roles of TRPA1 in physiological and pathological states. Unlike TRPV1 antagonists, A-967079 does not alter body temperature. It also does not produce locomotor or cardiovascular side effects. Collectively, these data provide novel insights into TRPA1 function and suggest that the selective TRPA1 blockade may present a viable strategy for alleviating pain without untoward side effects.


Subject(s)
Body Temperature Regulation/drug effects , Calcium Channels/metabolism , Cold Temperature/adverse effects , Hyperalgesia/drug therapy , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Pain/physiopathology , Sensation/physiology , Transient Receptor Potential Channels/antagonists & inhibitors , Transient Receptor Potential Channels/metabolism , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Body Temperature/drug effects , Body Temperature/physiology , Body Temperature Regulation/genetics , Body Temperature Regulation/physiology , Calcitonin Gene-Related Peptide/metabolism , Calcium/metabolism , Calcium Channels/genetics , Cells, Cultured , Disease Models, Animal , Drug Interactions , Ganglia, Spinal/pathology , Heart Rate/drug effects , Heart Rate/physiology , Humans , Hyperalgesia/physiopathology , Inhibitory Concentration 50 , Isothiocyanates/pharmacology , Magnetic Resonance Imaging/methods , Male , Mice , Nerve Tissue Proteins/genetics , Neurons/drug effects , Oximes/pharmacology , Oximes/therapeutic use , Pain/drug therapy , Pain/genetics , Pain/metabolism , Pain Measurement/methods , Rats , Rats, Sprague-Dawley , Reaction Time/drug effects , Sensation/drug effects , Sensory Thresholds/drug effects , TRPA1 Cation Channel , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Transient Receptor Potential Channels/genetics , Tritium
3.
Bioorg Med Chem ; 18(13): 4821-9, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20570528

ABSTRACT

The synthesis and structure-activity relationships of a series of 5-monosubstituted and 4,5-disubstituted 2-arylaminooxazoles as novel antagonists of the transient receptor potential vanilloid 1 (TRPV1) receptor are described. The 7-hydroxy group of the tetrahydronaphthyl moiety on the 2-amino substituent of the oxazole ring was important for obtaining excellent in vitro potency at the human TRPV1 receptor, while a variety of alkyl and phenyl substituents at the 4- and 5-positions of the oxazole ring were well tolerated and yielded potent TRPV1 antagonists. Despite excellent in vitro potency, the 5-monosubstituted compounds suffered from poor pharmacokinetics. It was found that 4,5-disubstitution on the oxazole ring was critical to the improvement of the overall pharmacokinetic profile of these analogues, which led to the discovery of compound (R)-27, a novel TRPV1 antagonist with good oral activity in preclinical animal models of pain.


Subject(s)
Naphthols/chemical synthesis , Oxazoles/chemistry , TRPV Cation Channels/antagonists & inhibitors , Cell Line , Crystallography, X-Ray , Humans , Molecular Conformation , Naphthols/chemistry , Naphthols/pharmacokinetics , Oxazoles/chemical synthesis , Oxazoles/pharmacokinetics , TRPV Cation Channels/metabolism
4.
Bioorg Med Chem Lett ; 20(11): 3291-4, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20457518

ABSTRACT

The synthesis and SAR of a series of indazole TRPV1 antagonists leading to the discovery of 21 (ABT-116) is described. Biological studies demonstrated potent in vitro and in vivo activity for 21, as well as suitable physicochemical and pharmacokinetic properties for advancement to clinical development for pain management.


Subject(s)
Analgesics/pharmacology , Indazoles/pharmacology , Phenylurea Compounds/pharmacology , TRPV Cation Channels/antagonists & inhibitors , Analgesics/pharmacokinetics , Animals , Humans , Indazoles/pharmacokinetics , Phenylurea Compounds/pharmacokinetics , Rats , Structure-Activity Relationship
5.
J Med Chem ; 50(15): 3651-60, 2007 Jul 26.
Article in English | MEDLINE | ID: mdl-17583335

ABSTRACT

The synthesis and structure-activity relationship of 1-(aryl)-3-(4-(amino)benzyl)urea transient receptor potential vanilloid 1 (TRPV1) antagonists are described. A variety of cyclic amine substituents are well tolerated at the 4-position of the benzyl group on compounds containing either an isoquinoline or indazole heterocyclic core. These compounds are potent antagonists of capsaicin activation of the TRPV1 receptor in vitro. Analogues, such as compound 45, have been identified that have good in vivo activity in animal models of pain. Further optimization of 45 resulted in compound 58 with substantially improved microsome stability and oral bioavailability, as well as in vivo activity.


Subject(s)
Analgesics/chemical synthesis , Indazoles/chemical synthesis , Phenylurea Compounds/chemical synthesis , TRPV Cation Channels/antagonists & inhibitors , Urea/analogs & derivatives , Administration, Oral , Analgesics/pharmacokinetics , Analgesics/pharmacology , Animals , Biological Availability , Dogs , Drug Stability , Humans , In Vitro Techniques , Indazoles/pharmacokinetics , Indazoles/pharmacology , Isoquinolines/chemical synthesis , Isoquinolines/pharmacokinetics , Isoquinolines/pharmacology , Microsomes, Liver/metabolism , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/pharmacology , Rats , Structure-Activity Relationship , Urea/chemical synthesis , Urea/pharmacokinetics , Urea/pharmacology
6.
Bioorg Med Chem Lett ; 17(14): 3894-9, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17507218

ABSTRACT

SAR studies for N-aryl-N'-benzyl urea class of TRPV1 antagonists have been extended to cover alpha-benzyl alkylation. Alkylated compounds showed weaker in vitro potencies in blocking capsaicin activation of TRPV1 receptor, but possessed improved pharmacokinetic properties. Further structural manipulations that included replacement of isoquinoline core with indazole and isolation of single enantiomer led to TRPV1 antagonists like (R)-16a with superior pharmacokinetic properties and greater potency in animal model of inflammatory pain.


Subject(s)
Analgesics/pharmacology , Inflammation/drug therapy , Models, Biological , Pain/drug therapy , TRPV Cation Channels/antagonists & inhibitors , Urea/pharmacology , Analgesics/pharmacokinetics , Analgesics/therapeutic use , Animals , Methylation , Rats , Urea/pharmacokinetics , Urea/therapeutic use
7.
Bioorg Med Chem ; 15(4): 1586-605, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17197188

ABSTRACT

A series of non-nucleoside adenosine kinase (AK) inhibitors is reported. These inhibitors originated from the modification of 5-(3-bromophenyl)-7-(6-morpholin-4-ylpyridin-3-yl)pyrido[2,3-d]pyrimidin-4-ylamine (ABT-702). The identification of a linker that would approximate the spatial arrangement found between the pyrimidine ring and the aryl group at C(7) in ABT-702 was a key element in this modification. A search of potential linkers led to the discovery of an acetylene moiety as a suitable scaffold. It was hypothesized that the aryl acetylenes, ABT-702, and adenosine bound to the active site of AK (closed form) in a similar manner with respect to the orientation of the heterocyclic base. Although potent acetylene analogs were discovered based on this assumption, an X-ray crystal structure of 5-(4-dimethylaminophenyl)-6-(6-morpholin-4-ylpyridin-3-ylethynyl)pyrimidin-4-ylamine (16a) revealed a binding orientation contrary to adenosine. In addition, this compound bound tightly to a unique open conformation of AK. The structure-activity relationships and unique ligand orientation and protein conformation are discussed.


Subject(s)
Adenosine Kinase/antagonists & inhibitors , Pyrimidines/chemistry , Pyrimidines/pharmacology , Adenosine Kinase/chemistry , Animals , Binding Sites , Crystallography, X-Ray , Inhibitory Concentration 50 , Mice , Morpholines , Protein Binding , Protein Conformation , Pyrimidines/chemical synthesis , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
8.
Bioorg Med Chem ; 14(14): 4740-9, 2006 Jul 15.
Article in English | MEDLINE | ID: mdl-16621571

ABSTRACT

Novel 5,6-fused heteroaromatic ureas were synthesized and evaluated for their activity as TRPV1 antagonists. It was found that 4-aminoindoles and indazoles are the preferential cores for the attachment of ureas. Bulky electron-withdrawing groups in the para-position of the aromatic ring of the urea substituents imparted the best in vitro potency at TRPV1. The most potent derivatives were assessed in in vivo inflammatory and neuropathic pain models. Compound 46, containing the indazole core and a 3,4-dichlorophenyl group appended to it via a urea linker, demonstrated in vivo analgesic activity upon oral administration. This derivative also showed selectivity versus other receptors in the CEREP screen and exhibited acceptable cardiovascular safety at levels exceeding the therapeutic dose.


Subject(s)
TRPV Cation Channels/antagonists & inhibitors , Urea/analogs & derivatives , Animals , In Vitro Techniques , Kinetics , Male , Mice , Motor Activity/drug effects , Pain Measurement , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , TRPV Cation Channels/metabolism , Urea/chemical synthesis , Urea/chemistry , Urea/pharmacology
9.
Bioorg Med Chem ; 13(11): 3705-20, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15863000

ABSTRACT

4-Amino-5,7-disubstituted pyridopyrimidines are potent, non-nucleoside inhibitors of adenosine kinase (AK). We recently identified a potent, orally efficacious analog, 4 containing a 7-pyridylmorpholine substituted ring system as the key structural element of this template. In this report, we disclose the pharmacologic effects of five- and six-membered heterocyclic ring replacements for the pyridine ring in 4. These replacements were found to have interesting effects on in vivo efficacy and genotoxicity as well as in vitro potency. We discovered that the nitrogen in the heterocyclic ring at C(7) is important for the modulation of mutagenic side effects (Ames assay).


Subject(s)
Adenosine Kinase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Morpholines/pharmacology , Pyrimidines/pharmacology , Animals , Cell Line , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Morpholines/chemistry , Pyrimidines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 15(11): 2803-7, 2005 Jun 02.
Article in English | MEDLINE | ID: mdl-15911258

ABSTRACT

The synthesis and structure-activity relationship of a series of 6,7-disubstituted 4-aminopyrido[2,3-d]pyrimidines as novel non-nucleoside adenosine kinase inhibitors is described. A variety of substituents, primarily aryl, at the C6 and C7 positions of the pyridopyrimidine core were found to yield analogues that are potent inhibitors of adenosine kinase. In contrast to the 5,7-disubstituted and 5,6,7-trisubstituted pyridopyrimidine series, these analogues exhibited only modest potency to inhibit AK in intact cells.


Subject(s)
Adenosine Kinase/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Pyrimidines/chemistry
11.
J Med Chem ; 48(3): 744-52, 2005 Feb 10.
Article in English | MEDLINE | ID: mdl-15689158

ABSTRACT

Novel transient receptor potential vanilloid 1 (TRPV1) receptor antagonists with various bicyclic heteroaromatic pharmacophores were synthesized, and their in vitro activity in blocking capsaicin activation of TRPV1 was assessed. On the basis of the contribution of these pharmacophores to the in vitro potency, they were ranked in the order of 5-isoquinoline > 8-quinoline = 8-quinazoline > 8-isoquinoline > or = cinnoline approximately phthalazine approximately quinoxaline approximately 5-quinoline. The 5-isoquinoline-containing compound 14a (hTRPV1 IC50 = 4 nM) exhibited 46% oral bioavailability and in vivo activity in animal models of visceral and inflammatory pain. Pharmacokinetic and pharmacological properties of 14a are substantial improvements over the profile of the high-throughput screening hit 1 (hTRPV1 IC50 = 22 nM), which was not efficacious in animal pain models and was not orally bioavailable.


Subject(s)
Analgesics/chemical synthesis , Isoquinolines/chemical synthesis , Pain/drug therapy , Receptors, Drug/antagonists & inhibitors , Urea/analogs & derivatives , Urea/chemical synthesis , Abdominal Pain/drug therapy , Administration, Oral , Analgesics/chemistry , Analgesics/pharmacology , Animals , Biological Availability , Calcium/metabolism , Cells, Cultured , Disease Models, Animal , Heterocyclic Compounds, 2-Ring/chemical synthesis , Heterocyclic Compounds, 2-Ring/chemistry , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Hyperalgesia/drug therapy , Isoquinolines/chemistry , Isoquinolines/pharmacology , Models, Molecular , Quinazolines/chemical synthesis , Quinazolines/chemistry , Quinazolines/pharmacology , Quinolines/chemical synthesis , Quinolines/chemistry , Quinolines/pharmacology , Rats , Static Electricity , Structure-Activity Relationship , Urea/chemistry , Urea/pharmacology
12.
Bioorg Med Chem Lett ; 14(16): 4165-8, 2004 Aug 16.
Article in English | MEDLINE | ID: mdl-15261263

ABSTRACT

Three new approaches have been tested to modify existing pyridopyrimidine and alkynylpyrimidine classes of nonnucleoside adenosine kinase inhibitors 2 and 3. 4-Amino-substituted pteridines 8a-e were generally less active than corresponding 5- and 6-substituted pyridopyrimidines 2. Pyrazolopyrimidine 13c with IC(50)=7.5 nM was superior to its open chain alkynylpyrimidine analog 13g (IC(50)=22 nM) while pyrrolopyrimidines such as 17a were inactive.


Subject(s)
Adenosine Kinase/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pteridines/chemical synthesis , Pteridines/pharmacology , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Enzyme Inhibitors/chemistry , Pteridines/chemistry , Pyrimidines/chemistry , Structure-Activity Relationship
13.
Eur J Med Chem ; 38(3): 245-52, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12667691

ABSTRACT

Under stressful conditions, many cells release adenosine to minimize tissue damage. Inhibition of intracellular adenosine kinase (AK) increases the local extracellular concentration of adenosine and its effect on traumatized tissue. The synthesis and SAR of a new series of pyridopyrimidines for the inhibition of AK are described. It was found that a range of analogs with position five substituted by an amine or ether functionality increased aqueous solubility while retaining the in vitro potency of initial leads. A narrower range of analogs was active in vivo in a rat inflammatory hyperalgesia model.


Subject(s)
Adenosine Kinase/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Indicators and Reagents , Magnetic Resonance Spectroscopy , Solubility , Structure-Activity Relationship
14.
J Med Chem ; 45(17): 3639-48, 2002 Aug 15.
Article in English | MEDLINE | ID: mdl-12166937

ABSTRACT

Adenosine (ADO) is an extracellular signaling molecule within the central and peripheral nervous system. Its concentration is increased at sites of tissue injury and inflammation. One of the mechanisms by which antinociceptive and antiinflammatory effects of ADO can be enhanced consists of inhibition of adenosine kinase (AK), the primary metabolic enzyme for ADO. Novel nonnucleoside AK inhibitors based on 4-amino-6-alkynylpyrimidines were prepared, and the importance of the length of the linker at the 5-position for high affinity AK inhibition was demonstrated. Compounds with 2- and 3-atom linkers were the most potent AK inhibitors. Optimization of their physicochemical properties led to 31a and 37a that effectively reduced pain and inflammation in animal models.


Subject(s)
Adenosine Kinase/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Morpholines/chemical synthesis , Pyridines/chemical synthesis , Pyrimidines/chemical synthesis , Adenosine/metabolism , Analgesics/chemical synthesis , Analgesics/chemistry , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Morpholines/chemistry , Morpholines/pharmacology , Pain Measurement , Phosphorylation , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...