Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Rep ; 43(9): 114656, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39240714

ABSTRACT

Cohesin is key to eukaryotic genome organization and acts throughout the cell cycle in an ATP-dependent manner. The mechanisms underlying cohesin ATPase activity are poorly understood. Here, we characterize distinct steps of the human cohesin ATPase cycle and show that the SMC1A and SMC3 ATPase domains undergo specific but concerted structural rearrangements along this cycle. Specifically, whereas the proximal coiled coil of the SMC1A ATPase domain remains conformationally stable, that of the SMC3 displays an intrinsic flexibility. The ATP-dependent formation of the heterodimeric SMC1A/SMC3 ATPase module (engaged state) favors this flexibility, which is counteracted by NIPBL and DNA binding (clamped state). Opening of the SMC3/RAD21 interface (open-engaged state) stiffens the SMC3 proximal coiled coil, thus constricting together with that of SMC1A the ATPase module DNA-binding chamber. The plasticity of the ATP-dependent interface between the SMC1A and SMC3 ATPase domains enables these structural rearrangements while keeping the ATP gate shut. VIDEO ABSTRACT.

2.
Cell Rep ; 40(9): 111273, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36044845

ABSTRACT

Chromosomes readily unlink and segregate to daughter cells during cell division, highlighting a remarkable ability of cells to organize long DNA molecules. SMC complexes promote DNA organization by loop extrusion. In most bacteria, chromosome folding initiates at dedicated start sites marked by the ParB/parS partition complexes. Whether SMC complexes recognize a specific DNA structure in the partition complex or a protein component is unclear. By replacing genes in Bacillus subtilis with orthologous sequences from Streptococcus pneumoniae, we show that the three subunits of the bacterial Smc complex together with the ParB protein form a functional module that can organize and segregate foreign chromosomes. Using chimeric proteins and chemical cross-linking, we find that ParB directly binds the Smc subunit. We map an interface to the Smc joint and the ParB CTP-binding domain. Structure prediction indicates how the ParB clamp presents DNA to the Smc complex, presumably to initiate DNA loop extrusion.


Subject(s)
Bacterial Proteins , Cell Cycle Proteins , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosome Segregation , Chromosomes, Bacterial/metabolism , DNA/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism
3.
Methods Mol Biol ; 2004: 49-61, 2019.
Article in English | MEDLINE | ID: mdl-31147909

ABSTRACT

Site-directed mutagenesis is a key tool in the analysis of biological mechanisms. We have established an efficient and systematic gene targeting strategy for Bacillus subtilis based on the Golden Gate cloning methodology. Our approach permits the introduction of single or multiple point mutations or of heavily engineered alleles into the endogenous gene locus in a single step using a 96-well microtiter plate format. We have successfully applied this system for high-throughput functional screening of resized variants of the Structural Maintenance of Chromosome (Smc) protein and for exhaustive cysteine cross-linking mutagenesis. Here we describe, in detail, the experimental setup for high-throughput introduction of modifications into the B. subtilis chromosome. With minor modifications, the approach should be applicable to other bacteria and yeast.


Subject(s)
Bacillus subtilis/genetics , High-Throughput Screening Assays/methods , Alleles , Chromosomes/genetics , Mutagenesis/genetics , Mutagenesis, Site-Directed/methods , Point Mutation/genetics
4.
Mol Cell ; 67(2): 334-347.e5, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28689660

ABSTRACT

Multi-subunit SMC complexes control chromosome superstructure and promote chromosome disjunction, conceivably by actively translocating along DNA double helices. SMC subunits comprise an ABC ATPase "head" and a "hinge" dimerization domain connected by a 49 nm coiled-coil "arm." The heads undergo ATP-dependent engagement and disengagement to drive SMC action on the chromosome. Here, we elucidate the architecture of prokaryotic Smc dimers by high-throughput cysteine cross-linking and crystallography. Co-alignment of the Smc arms tightly closes the interarm space and misaligns the Smc head domains at the end of the rod by close apposition of their ABC signature motifs. Sandwiching of ATP molecules between Smc heads requires them to substantially tilt and translate relative to each other, thereby opening up the Smc arms. We show that this mechanochemical gating reaction regulates chromosome targeting and propose a mechanism for DNA translocation based on the merging of DNA loops upon closure of Smc arms.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Chromosome Segregation , Chromosomes, Bacterial , Adenosine Triphosphate/metabolism , Bacillus subtilis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Crystallography, X-Ray , Cysteine , High-Throughput Screening Assays , Models, Molecular , Mutation , Nucleic Acid Conformation , Protein Conformation , Protein Multimerization , Protein Stability , Structure-Activity Relationship
5.
Mol Cell ; 65(5): 861-872.e9, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28238653

ABSTRACT

SMC proteins support vital cellular processes in all domains of life by organizing chromosomal DNA. They are composed of ATPase "head" and "hinge" dimerization domains and a connecting coiled-coil "arm." Binding to a kleisin subunit creates a closed tripartite ring, whose ∼47-nm-long SMC arms act as barrier for DNA entrapment. Here, we uncover another, more active function of the bacterial Smc arm. Using high-throughput genetic engineering, we resized the arm in the range of 6-60 nm and found that it was functional only in specific length regimes following a periodic pattern. Natural SMC sequences reflect these length constraints. Mutants with improper arm length or peptide insertions in the arm efficiently target chromosomal loading sites and hydrolyze ATP but fail to use ATP hydrolysis for relocation onto flanking DNA. We propose that SMC arms implement force transmission upon nucleotide hydrolysis to mediate DNA capture or loop extrusion.


Subject(s)
Adenosine Triphosphatases/metabolism , Bacillus subtilis/enzymology , Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Chromosomes, Bacterial/enzymology , DNA, Bacterial/metabolism , DNA-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphate/metabolism , Bacillus subtilis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Chromosomes, Bacterial/chemistry , Chromosomes, Bacterial/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Genetic Engineering/methods , High-Throughput Screening Assays , Hydrolysis , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Mutation , Nucleic Acid Conformation , Protein Binding , Protein Conformation, alpha-Helical , Structure-Activity Relationship
6.
Cell Rep ; 14(8): 2003-16, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26904953

ABSTRACT

Smc/ScpAB promotes chromosome segregation in prokaryotes, presumably by compacting and resolving nascent sister chromosomes. The underlying mechanisms, however, are poorly understood. Here, we investigate the role of the Smc ATPase activity in the recruitment of Smc/ScpAB to the Bacillus subtilis chromosome. We demonstrate that targeting of Smc/ScpAB to ParB/parS loading sites is strictly dependent on engagement of Smc head domains and relies on an open organization of the Smc coiled coils. We find that dimerization of the Smc hinge domain stabilizes closed Smc rods and hinders head engagement as well as chromosomal targeting. Conversely, the ScpAB sub-complex promotes head engagement and Smc rod opening and thereby facilitates recruitment of Smc to parS sites. Upon ATP hydrolysis, Smc/ScpAB is released from loading sites and relocates within the chromosome-presumably through translocation along DNA double helices. Our findings define an intermediate state in the process of chromosome organization by Smc.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Chromosomes, Bacterial/chemistry , DNA Primase/metabolism , DNA, Bacterial/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Cell Cycle Proteins/genetics , Cell Division , Chromosome Segregation , Chromosomes, Bacterial/ultrastructure , DNA Primase/genetics , DNA, Bacterial/genetics , Hydrolysis , Isoenzymes/genetics , Isoenzymes/metabolism , Models, Molecular , Molecular Sequence Data , Protein Domains , Protein Multimerization , Protein Structure, Secondary , Protein Transport , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL