Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Hepatol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782119

ABSTRACT

BACKGROUND & AIMS: Transcription termination fine tunes gene expression and contributes to specify the function of RNAs in eukaryotic cells. Transcription termination of hepatitis B virus (HBV) is subjected to the recognition of the canonical polyadenylation signal (cPAS) common to all viral transcripts. The regulation of the usage of this cPAS and its impact on viral gene expression and replication is currently unknown. APPROACH & RESULTS: To unravel the regulation of HBV transcript termination, we implemented a 3' RACE-PCR assay coupled to single molecule sequencing both in in vitro infected hepatocytes and in chronically infected patients. The detection of a previously unidentified transcriptional readthrough indicated that the cPAS was not systematically recognized during HBV replication in vitro and in vivo. Gene expression downregulation experiments demonstrated a role for the RNA helicases DDX5 and DDX17 in promoting viral transcriptional readthrough, which was, in turn, associated to HBV RNA destabilization and decreased HBx protein expression. RNA and chromatin immunoprecipitation, together with mutation of cPAS sequence, suggested a direct role of DDX5 and DDX17 in functionally linking cPAS recognition to transcriptional readthrough, HBV RNA stability and replication. CONCLUSIONS: Our findings identify DDX5 and DDX17 as crucial determinants for HBV transcriptional fidelity and as host restriction factors for HBV replication. IMPACT AND IMPLICATIONS: Hepatitis B virus (HBV) covalently closed circular (ccc)DNA degradation or functional inactivation remains the holy grail to be attained to achieve HBV cure. Transcriptional fidelity is a cornerstone in gene expression regulation. Here, we demonstrate that two helicases, DDX5 and DDX17, inhibit the recognition of HBV polyadenylation signal and transcriptional termination, thus decreasing HBV RNA stability and acting as restriction factors for efficient cccDNA transcription and viral replication. The observation that DDX5 and DDX17 are downregulated in HBV chronically infected patients suggests a role for the helicases in HBV persistence in vivo. These results open new perspectives for researchers aiming at identifying new targets to neutralise cccDNA transcription.

2.
Gut ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697771

ABSTRACT

OBJECTIVE: Achieving HBV cure will require novel combination therapies of direct-acting antivirals and immunomodulatory agents. In this context, the toll-like receptor 8 (TLR8) agonist selgantolimod (SLGN) has been investigated in preclinical models and clinical trials for chronic hepatitis B (CHB). However, little is known regarding its action on immune effectors within the liver. Our aim was to characterise the transcriptomic changes and intercellular communication events induced by SLGN in the hepatic microenvironment. DESIGN: We identified TLR8-expressing cell types in the human liver using publicly available single-cell RNA-seq data and established a method to isolate Kupffer cells (KCs). We characterised transcriptomic and cytokine KC profiles in response to SLGN. SLGN's indirect effect was evaluated by RNA-seq in hepatocytes treated with SLGN-conditioned media (CM) and quantification of HBV parameters following infection. Pathways mediating SLGN's effect were validated using transcriptomic data from HBV-infected patients. RESULTS: Hepatic TLR8 expression takes place in the myeloid compartment. SLGN treatment of KCs upregulated monocyte markers (eg, S100A12) and downregulated genes associated with the KC identity (eg, SPIC). Treatment of hepatocytes with SLGN-CM downregulated NTCP and impaired HBV entry. Cotreatment with an interleukin 6-neutralising antibody reverted the HBV entry inhibition. CONCLUSION: Our transcriptomic characterisation of SLGN sheds light into the programmes regulating KC activation. Furthermore, in addition to its previously described effect on established HBV infection and adaptive immunity, we show that SLGN impairs HBV entry. Altogether, SLGN may contribute through KCs to remodelling the intrahepatic immune microenvironment and may thus represent an important component of future combinations to cure HBV infection.

3.
Cell Mol Gastroenterol Hepatol ; 14(3): 527-551, 2022.
Article in English | MEDLINE | ID: mdl-35643233

ABSTRACT

BACKGROUND & AIMS: Upon hepatitis B virus (HBV) infection, partially double-stranded viral DNA converts into a covalently closed circular chromatinized episomal structure (cccDNA). This form represents the long-lived genomic reservoir responsible for viral persistence in the infected liver. Although the involvement of host cell DNA damage response in cccDNA formation has been established, this work investigated the yet-to-be-identified histone dynamics on cccDNA during early phases of infection in human hepatocytes. METHODS: Detailed studies of host chromatin-associated factors were performed in cell culture models of natural infection (ie, Na+-taurocholate cotransporting polypeptide (NTCP)-overexpressing HepG2 cells, HepG2hNTCP) and primary human hepatocytes infected with HBV, by cccDNA-specific chromatin immunoprecipitation and loss-of-function experiments during early kinetics of viral minichromosome establishment and onset of viral transcription. RESULTS: Our results show that cccDNA formation requires the deposition of the histone variant H3.3 via the histone regulator A (HIRA)-dependent pathway. This occurs simultaneously with repair of the cccDNA precursor and independently from de novo viral protein expression. Moreover, H3.3 in its S31 phosphorylated form appears to be the preferential H3 variant found on transcriptionally active cccDNA in infected cultured cells and human livers. HIRA depletion after cccDNA pool establishment showed that HIRA recruitment is required for viral transcription and RNA production. CONCLUSIONS: Altogether, we show a crucial role for HIRA in the interplay between HBV genome and host cellular machinery to ensure the formation and active transcription of the viral minichromosome in infected hepatocytes.


Subject(s)
Hepatitis B virus , Hepatitis B , Cell Cycle Proteins/metabolism , DNA, Circular/genetics , DNA, Viral/genetics , Hep G2 Cells , Hepatitis B/genetics , Hepatitis B/metabolism , Hepatitis B virus/genetics , Hepatocytes/metabolism , Histone Chaperones/genetics , Histone Chaperones/metabolism , Histones/metabolism , Humans , Transcription Factors/metabolism , Virus Replication
4.
Cancers (Basel) ; 14(5)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35267594

ABSTRACT

Burkitt lymphoma (BL) is a malignant B cell neoplasm that accounts for almost half of pediatric cancers in sub-Saharan African countries. Although the BL endemic prevalence is attributable to the combination of Epstein-Barr virus (EBV) infection with malaria and environmental carcinogens exposure, such as the food contaminant aflatoxin B1 (AFB1), the molecular determinants underlying the pathogenesis are not fully understood. Consistent with the role of epigenetic mechanisms at the interface between the genome and environment, AFB1 and EBV impact the methylome of respectively leukocytes and B cells specifically. Here, we conducted a thorough investigation of common epigenomic changes following EBV or AFB1 exposure in B cells. Genome-wide DNA methylation profiling identified an EBV-AFB1 common signature within the TGFBI locus, which encodes for a putative tumor suppressor often altered in cancer. Subsequent mechanistic analyses confirmed a DNA-methylation-dependent transcriptional silencing of TGFBI involving the recruitment of DNMT1 methyltransferase that is associated with an activation of the NF-κB pathway. Our results reveal a potential common mechanism of B cell transformation shared by the main risk factors of endemic BL (EBV and AFB1), suggesting a key determinant of disease that could allow the development of more efficient targeted therapeutic strategies.

5.
Sci Rep ; 10(1): 21097, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33273565

ABSTRACT

Hepatitis B virus (HBV) covalently closed circular (ccc)DNA is the key genomic form responsible for viral persistence and virological relapse after treatment withdrawal. The assessment of residual intrahepatic cccDNA levels and activity after long-term nucleos(t)ide analogues therapy still represents a technical challenge. Quantitative (q)PCR, rolling circle amplification (RCA) and droplet digital (dd)PCR assays were used to quantify residual intrahepatic cccDNA in liver biopsies from 56 chronically HBV infected patients after 3 to 5 years of telbivudine treatment. Activity of residual cccDNA was evaluated by quantifying 3.5 kB HBV RNA (preC/pgRNA) and by assessing cccDNA-associated histone tails post-transcriptional modifications (PTMs) by micro-chromatin immunoprecipitation. Long-term telbivudine treatment resulted in serum HBV DNA suppression, with most of the patients reaching undetectable levels. Despite 38 out of 56 patients had undetectable cccDNA when assessed by qPCR, RCA and ddPCR assays detected cccDNA in all-but-one negative samples. Low preC/pgRNA level in telbivudine-treated samples was associated with enrichment for cccDNA histone PTMs related to repressed transcription. No difference in cccDNA levels was found according to serum viral markers evolution. This panel of cccDNA evaluation techniques should provide an added value for the new proof-of-concept clinical trials aiming at a functional cure of chronic hepatitis B.


Subject(s)
DNA, Circular/genetics , DNA, Viral/genetics , Epigenesis, Genetic , Hepatitis B/drug therapy , Hepatitis B/genetics , Nucleosides/analogs & derivatives , Nucleosides/therapeutic use , Adult , Biomarkers/metabolism , Biopsy , Female , Hepatitis B/virology , Humans , Liver/pathology , Male , Telbivudine/pharmacology , Telbivudine/therapeutic use , Treatment Outcome
6.
J Hepatol ; 73(1): 40-51, 2020 07.
Article in English | MEDLINE | ID: mdl-32087349

ABSTRACT

BACKGROUND & AIMS: Covalently closed circular DNA (cccDNA) is the episomal form of the HBV genome that stably resides in the nucleus of infected hepatocytes. cccDNA is the template for the transcription of 6 major viral RNAs, i.e. preC, pg, preS1/2, S and HBx RNA. All viral transcripts share the same 3' end and are all to various degrees subsets of each other. Especially under infection conditions, it has been difficult to study in depth the transcription of the different viral transcripts. We thus wanted to develop a method with which we could easily detect the full spectrum of viral RNAs in any lab. METHODS: We set up an HBV full-length 5'RACE (rapid amplification of cDNA ends) method with which we measured and characterized the full spectrum of viral RNAs in cell culture and in chronically infected patients. RESULTS: In addition to canonical HBx transcripts coding for full-length X, we identified shorter HBx transcripts potentially coding for short X proteins. We showed that interferon-ß treatment leads to a strong reduction of preC and pgRNAs but has only a moderate effect on the other viral transcripts. We found pgRNA, 1 spliced pgRNA variant and a variety of HBx transcripts associated with viral particles generated by HepAD38 cells. The different HBx RNAs are both capped and uncapped. Lastly, we identified 3 major categories of circulating RNA species in patients with chronic HBV infection: pgRNA, spliced pgRNA variants and HBx. CONCLUSIONS: This HBV full-length 5'RACE method should significantly contribute to the understanding of HBV transcription during the course of infection and therapy and may guide the development of novel therapies aimed at targeting cccDNA. LAY SUMMARY: Especially under infection conditions, it has been difficult to study the different hepatitis B virus transcripts in depth. This study introduces a new method that can be used in any standard lab to discriminate all hepatitis B viral transcripts in cell culture and in the serum of patients.


Subject(s)
Hepatitis B virus , Hepatitis B , Hepatocytes/virology , Nucleic Acid Amplification Techniques/methods , DNA, Viral/analysis , Gene Expression Profiling/methods , Hepatitis B/blood , Hepatitis B/pathology , Hepatitis B/virology , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Humans , Transcriptome
7.
J Virol ; 93(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-30996097

ABSTRACT

The histone modifier lysine (K)-specific demethylase 2B (KDM2B) plays a role in the differentiation of hematopoietic cells, and its expression appears to be deregulated in certain cancers of hematological and lymphoid origins. We have previously found that the KDM2B gene is differentially methylated in cell lines derived from Epstein-Barr virus (EBV)-associated endemic Burkitt lymphoma (eBL) compared with that in EBV-negative sporadic Burkitt lymphoma-derived cells. However, whether KDM2B plays a role in eBL development has not been previously investigated. Oncogenic viruses have been shown to hijack the host cell epigenome to complete their life cycle and to promote the transformation process by perturbing cell chromatin organization. Here, we investigated whether EBV alters KDM2B levels to enable its life cycle and promote B-cell transformation. We show that infection of B cells with EBV leads to downregulation of KDM2B levels. We also show that LMP1, one of the main EBV transforming proteins, induces increased DNMT1 recruitment to the KDM2B gene and augments its methylation. By altering KDM2B levels and performing chromatin immunoprecipitation in EBV-infected B cells, we show that KDM2B is recruited to the EBV gene promoters and inhibits their expression. Furthermore, forced KDM2B expression in immortalized B cells led to altered mRNA levels of some differentiation-related genes. Our data show that EBV deregulates KDM2B levels through an epigenetic mechanism and provide evidence for a role of KDM2B in regulating virus and host cell gene expression, warranting further investigations to assess the role of KDM2B in the process of EBV-mediated lymphomagenesis.IMPORTANCE In Africa, Epstein-Barr virus infection is associated with endemic Burkitt lymphoma, a pediatric cancer. The molecular events leading to its development are poorly understood compared with those leading to sporadic Burkitt lymphoma. In a previous study, by analyzing the DNA methylation changes in endemic compared with sporadic Burkitt lymphoma cell lines, we identified several differential methylated genomic positions in the proximity of genes with a potential role in cancer, and among them was the KDM2B gene. KDM2B encodes a histone H3 demethylase already shown to be involved in some hematological disorders. However, whether KDM2B plays a role in the development of Epstein-Barr virus-mediated lymphoma has not been investigated before. In this study, we show that Epstein-Barr virus deregulates KDM2B expression and describe the underlying mechanisms. We also reveal a role of the demethylase in controlling viral and B-cell gene expression, thus highlighting a novel interaction between the virus and the cellular epigenome.


Subject(s)
Epigenesis, Genetic , Epstein-Barr Virus Infections/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Herpesvirus 4, Human/physiology , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Adolescent , Adult , B-Lymphocytes/virology , Burkitt Lymphoma/metabolism , Cell Line , Child , Child, Preschool , Chromatin/metabolism , Chromatin Immunoprecipitation , DNA Methylation , Down-Regulation , Epstein-Barr Virus Infections/genetics , Female , Gene Expression Regulation , Humans , Male , Middle Aged , Young Adult
8.
Sci Rep ; 7(1): 5852, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28724958

ABSTRACT

Epstein-Barr virus (EBV) was identified as the first human virus to be associated with a human malignancy, Burkitt's lymphoma (BL), a pediatric cancer endemic in sub-Saharan Africa. The exact mechanism of how EBV contributes to the process of lymphomagenesis is not fully understood. Recent studies have highlighted a genetic difference between endemic (EBV+) and sporadic (EBV-) BL, with the endemic variant showing a lower somatic mutation load, which suggests the involvement of an alternative virally-driven process of transformation in the pathogenesis of endemic BL. We tested the hypothesis that a global change in DNA methylation may be induced by infection with EBV, possibly thereby accounting for the lower mutation load observed in endemic BL. Our comparative analysis of the methylation profiles of a panel of BL derived cell lines, naturally infected or not with EBV, revealed that the presence of the virus is associated with a specific pattern of DNA methylation resulting in altered expression of cellular genes with a known or potential role in lymphomagenesis. These included ID3, a gene often found to be mutated in sporadic BL. In summary this study provides evidence that EBV may contribute to the pathogenesis of BL through an epigenetic mechanism.


Subject(s)
Burkitt Lymphoma/genetics , Burkitt Lymphoma/virology , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Herpesvirus 4, Human/physiology , Burkitt Lymphoma/pathology , Cell Line, Tumor , CpG Islands/genetics , DNA Methylation/genetics , Down-Regulation/genetics , Gene Silencing , Humans , Inhibitor of Differentiation Proteins/metabolism , Mutation/genetics , Neoplasm Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Viral Matrix Proteins/metabolism
9.
J Virol ; 91(4)2017 02 15.
Article in English | MEDLINE | ID: mdl-27974555

ABSTRACT

Zaire ebolavirus (EBOV), Bundibugyo ebolavirus (BDBV), and Reston ebolavirus (RESTV) belong to the same genus but exhibit different virulence properties. VP24 protein, a structural protein present in all family members, blocks interferon (IFN) signaling and likely contributes to virulence. Inhibition of IFN signaling by EBOV VP24 (eVP24) involves its interaction with the NPI-1 subfamily of karyopherin alpha (KPNA) nuclear transporters. Here, we evaluated eVP24, BDBV VP24 (bVP24), and RESTV VP24 (rVP24) interactions with three NPI-1 subfamily KPNAs (KPNA1, KPNA5, and KPNA6). Using purified proteins, we demonstrated that each VP24 binds to each of the three NPI-1 KPNAs. bVP24, however, exhibited approximately 10-fold-lower KPNA binding affinity than either eVP24 or rVP24. Cell-based assays also indicate that bVP24 exhibits decreased KPNA interaction, decreased suppression of IFN induced gene expression, and a decreased half-life in transfected cells compared to eVP24 or rVP24. Amino acid sequence alignments between bVP24 and eVP24 also identified residues within and surrounding the previously defined eVP24-KPNA5 binding interface that decrease eVP24-KPNA affinity or bVP24-KPNA affinity. VP24 mutations that lead to reduced KPNA binding affinity also decrease IFN inhibition and shorten VP24 half-lives. These data identify novel functional differences in VP24-KPNA interaction and reveal a novel impact of the VP24-KPNA interaction on VP24 stability. IMPORTANCE: The interaction of Ebola virus (EBOV) VP24 protein with host karyopherin alpha (KPNA) proteins blocks type I interferon (IFN) signaling, which is a central component of the host innate immune response to viral infection. Here, we quantitatively compared the interactions of VP24 proteins from EBOV and two members of the Ebolavirus genus, Bundibugyo virus (BDBV) and Reston virus (RESTV). The data reveal lower binding affinity of the BDBV VP24 (bVP24) for KPNAs and demonstrate that the interaction with KPNA modulates inhibition of IFN signaling and VP24 stability. The effect of KPNA interaction on VP24 stability is a novel functional consequence of this virus-host interaction, and the differences identified between viral species may contribute to differences in pathogenesis.


Subject(s)
Ebolavirus/physiology , Hemorrhagic Fever, Ebola/metabolism , Hemorrhagic Fever, Ebola/virology , Interferons/metabolism , Viral Proteins/metabolism , alpha Karyopherins/metabolism , Amino Acid Sequence , Cell Line , Hemorrhagic Fever, Ebola/genetics , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Isoforms , Protein Stability , Recombinant Fusion Proteins , Structure-Activity Relationship , Viral Proteins/chemistry , alpha Karyopherins/chemistry , alpha Karyopherins/genetics
10.
FEBS Lett ; 587(18): 2965-71, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-23954291

ABSTRACT

The interplay between influenza A viruses (IAV) and p53 has only been reported in a limited number of studies, mainly focusing on the antiviral role of p53. We investigated the impact of IAV infection on p53 stability and transcriptional activity. Our results indicate that IAV-induced stabilization of p53 only partially correlates with modulation of p53 transcriptional activity measured during infection. Moreover, we show that the viral non-structural protein 1 (NS1) is able to inhibit p53 transcriptional activity, in a promoter-dependent manner. Based on these data, we propose that NS1 may contribute to p53-mediated cell fate decision during IAV infection.


Subject(s)
Influenza A Virus, H3N2 Subtype/metabolism , Transcription, Genetic , Tumor Suppressor Protein p53/metabolism , Viral Nonstructural Proteins/metabolism , Animals , Binding Sites , Cell Line , Dogs , Host-Pathogen Interactions , Humans , Influenza A Virus, H3N2 Subtype/genetics , Madin Darby Canine Kidney Cells , Promoter Regions, Genetic , Protein Binding , Protein Stability , Tumor Suppressor Protein p53/genetics , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...