Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Circ Res ; 134(2): 189-202, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38152893

ABSTRACT

BACKGROUND: Diabetes is a major risk factor for atherosclerotic cardiovascular diseases with a 2-fold higher risk of cardiovascular events in people with diabetes compared with those without. Circulating monocytes are inflammatory effector cells involved in both type 2 diabetes (T2D) and atherogenesis. METHODS: We investigated the relationship between circulating monocytes and cardiovascular risk progression in people with T2D, using phenotypic, transcriptomic, and metabolomic analyses. cardiovascular risk progression was estimated with coronary artery calcium score in a cohort of 672 people with T2D. RESULTS: Coronary artery calcium score was positively correlated with blood monocyte count and frequency of the classical monocyte subtype. Unsupervised k-means clustering based on monocyte subtype profiles revealed 3 main endotypes of people with T2D at varying risk of cardiovascular events. These observations were confirmed in a validation cohort of 279 T2D participants. The predictive association between monocyte count and major adverse cardiovascular events was validated through an independent prospective cohort of 757 patients with T2D. Integration of monocyte transcriptome analyses and plasma metabolomes showed a disruption of mitochondrial pathways (tricarboxylic acid cycle, oxidative phosphorylation pathway) that underlined a proatherogenic phenotype. CONCLUSIONS: In this study, we provide evidence that frequency and monocyte phenotypic profile are closely linked to cardiovascular risk in patients with T2D. The assessment of monocyte frequency and count is a valuable predictive marker for risk of cardiovascular events in patients with T2D. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04353869.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Humans , Monocytes/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Risk Factors , Prospective Studies , Calcium/metabolism , Phenotype , Heart Disease Risk Factors
2.
Cell Rep ; 42(11): 113350, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37897726

ABSTRACT

Although high-fat diet (HFD)-induced gut microbiota dysbiosis is known to affect atherosclerosis, the underlying mechanisms remain to be fully explored. Here, we show that the progression of atherosclerosis depends on a gut microbiota shaped by an HFD but not a high-cholesterol (HC) diet and, more particularly, on low fiber (LF) intake. Mechanistically, gut lymphoid cells impacted by HFD- or LF-induced microbiota dysbiosis highly proliferate in mesenteric lymph nodes (MLNs) and migrate from MLNs to the periphery, which fuels T cell accumulation within atherosclerotic plaques. This is associated with the induction of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) within plaques and the presence of enterotropic lymphocytes expressing ß7 integrin. MLN resection or lymphocyte deficiency abrogates the pro-atherogenic effects of a microbiota shaped by LF. Our study shows a pathological link between a diet-shaped microbiota, gut immune cells, and atherosclerosis, suggesting that a diet-modulated microbiome might be a suitable therapeutic target to prevent atherosclerosis.


Subject(s)
Atherosclerosis , Microbiota , Plaque, Atherosclerotic , Humans , Animals , Mice , Dysbiosis/chemically induced , Lymphocytes , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
3.
Nat Commun ; 14(1): 4622, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528097

ABSTRACT

Caspase recruitment-domain containing protein 9 (CARD9) is a key signaling pathway in macrophages but its role in atherosclerosis is still poorly understood. Global deletion of Card9 in Apoe-/- mice as well as hematopoietic deletion in Ldlr-/- mice increases atherosclerosis. The acceleration of atherosclerosis is also observed in Apoe-/-Rag2-/-Card9-/- mice, ruling out a role for the adaptive immune system in the vascular phenotype of Card9 deficient mice. Card9 deficiency alters macrophage phenotype through CD36 overexpression with increased IL-1ß production, increased lipid uptake, higher cell death susceptibility and defective autophagy. Rapamycin or metformin, two autophagy inducers, abolish intracellular lipid overload, restore macrophage survival and autophagy flux in vitro and finally abolish the pro-atherogenic effects of Card9 deficiency in vivo. Transcriptomic analysis of human CARD9-deficient monocytes confirms the pathogenic signature identified in murine models. In summary, CARD9 is a key protective pathway in atherosclerosis, modulating macrophage CD36-dependent inflammatory responses, lipid uptake and autophagy.


Subject(s)
Atherosclerosis , Humans , Animals , Mice , Atherosclerosis/metabolism , Autophagy/genetics , Apolipoproteins E/genetics , Lipids , CARD Signaling Adaptor Proteins/metabolism , Mice, Knockout , Mice, Inbred C57BL
4.
Diabetes Technol Ther ; 25(4): 279-286, 2023 04.
Article in English | MEDLINE | ID: mdl-36763338

ABSTRACT

Objective: The use of continuous glucose monitoring (CGM) systems and continuous subcutaneous insulin infusion (CSII) devices adhering to the skin can lead to skin reactions. The objective was to determine the prevalence and consequences of skin reactions at CGM or CSII sites in a large unbiased population. Research Design and Methods: This is a cross-sectional multicenter study. All adult patients with diabetes seen in consultation over a period of 7 months and using or having used a system with skin adhesives (in the last 10 years) were included and filled out a self-assessment questionnaire. Results: Among 851 patients, skin reaction was reported in 28% with CGM and 29% with CSII. Patients reporting reactions were more frequently women using CGM and CSII, and CGM users had type 1 more often than type 2 diabetes (P < 0.001). Manifestations were similar for reactions to CGM and CSII: redness and pruritus in 70%-75% of patients with reactions, pain in 20%-25%, and vesicles and desquamation in 12%-15%. Manifestations occurred within the first 24 h of first use in 22%-24% of patients with reactions to CGM and CSII, but after more than 6 months in 38% and 47% of patients with reactions to CGM and CSII, respectively. Device use was definitively stopped in 12% of patients with reactions to CGM (3.2% of all users) and 7% with reactions to CSII (2.1% of all users). Conclusions: Skin reactions were common, with similar presentations in CGM and CSII users. Manifestations suggested skin irritation rather than allergies. These reactions rarely led to the definitive discontinuation of the use of the device.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Humans , Adult , Female , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Blood Glucose , Blood Glucose Self-Monitoring , Prevalence , Cross-Sectional Studies , Insulin Infusion Systems/adverse effects , Insulin/therapeutic use
6.
Nat Commun ; 13(1): 6592, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36329047

ABSTRACT

JAK2V617F mutation is associated with an increased risk for athero-thrombotic cardiovascular disease, but its role in aortic disease development and complications remains unknown. In a cohort of patients with myeloproliferative neoplasm, JAK2V617F mutation was identified as an independent risk factor for dilation of both the ascending and descending thoracic aorta. Using single-cell RNA-seq, complementary genetically-modified mouse models, as well as pharmacological approaches, we found that JAK2V617F mutation was associated with a pathogenic pro-inflammatory phenotype of perivascular tissue-resident macrophages, which promoted deleterious aortic wall remodeling at early stages, and dissecting aneurysm through the recruitment of circulating monocytes at later stages. Finally, genetic manipulation of tissue-resident macrophages, or treatment with a Jak2 inhibitor, ruxolitinib, mitigated aortic wall inflammation and reduced aortic dilation and rupture. Overall, JAK2V617F mutation drives vascular resident macrophages toward a pathogenic phenotype and promotes dissecting aortic aneurysm.


Subject(s)
Aortic Aneurysm , Aortic Dissection , Mice , Animals , Aortic Dissection/pathology , Phenotype , Mutation , Macrophages/pathology , Aortic Aneurysm/genetics , Aortic Aneurysm/complications
7.
Nat Commun ; 13(1): 5399, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36104342

ABSTRACT

Cancer and cardiovascular disease (CVD) share common risk factors such as dyslipidemia, obesity and inflammation. However, the role of pro-atherogenic environment and its associated low-grade inflammation in tumor progression remains underexplored. Here we show that feeding C57BL/6J mice with a non-obesogenic high fat high cholesterol diet (HFHCD) for two weeks to induce mild dyslipidemia, increases the pool of circulating Ly6Chi monocytes available for initial melanoma development, in an IL-1ß-dependent manner. Descendants of circulating myeloid cells, which accumulate in the tumor microenvironment of mice under HFHCD, heighten pro-angiogenic and immunosuppressive activities locally. Limiting myeloid cell accumulation or targeting VEGF-A production by myeloid cells decrease HFHCD-induced tumor growth acceleration. Reverting the HFHCD to a chow diet at the time of tumor implantation protects against tumor growth. Together, these data shed light on cross-disease communication between cardiovascular pathologies and cancer.


Subject(s)
Dyslipidemias , Monocytes , Animals , Carcinogenesis/pathology , Cell Transformation, Neoplastic/pathology , Dyslipidemias/pathology , Inflammation/pathology , Mice , Mice, Inbred C57BL , Monocytes/pathology , Myeloid Cells/pathology , Tumor Microenvironment
8.
Cells ; 12(1)2022 12 28.
Article in English | MEDLINE | ID: mdl-36611907

ABSTRACT

Type 1 diabetes (T1D) is an auto-immune disease characterized by the progressive destruction of insulin-producing pancreatic beta cells. While beta cells are the target of the immune attack, the other islet endocrine cells, namely the alpha and delta cells, can also be affected by the inflammatory milieu. Here, using a flow cytometry-based strategy, we compared the impact of IFNγ, one of the main cytokines involved in T1D, on the three endocrine cell subsets isolated from C57BL/6 mouse islets. RNA-seq analyses revealed that alpha and delta cells exposed in vitro to IFNγ display a transcriptomic profile very similar to that of beta cells, with an increased expression of inflammation key genes such as MHC class I molecules, the CXCL10 chemokine and the programmed death-ligand 1 (PD-L1), three hallmarks of IFNγ signaling. Interestingly, at low IFNγ concentration, we observed two beta cell populations (responders and non-responders) based on PD-L1 protein expression. Our data indicate that this differential sensitivity relies on the location of the cells within the islet rather than on the existence of two different beta cells subsets. The same findings were corroborated by the in vivo analysis of pancreatic islets from the non-obese diabetic mouse model of T1D, showing more intense PD-L1 staining on endocrine cells close to immune infiltrate. Collectively, our work demonstrates that alpha and delta cells are as sensitive as beta cells to IFNγ, and suggests a gradual diffusion of the cytokine into an islet. These observations provide novel insights into the in situ inflammatory processes occurring in T1D progression.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Islets of Langerhans , Mice , Animals , Diabetes Mellitus, Type 1/genetics , B7-H1 Antigen/metabolism , Mice, Inbred C57BL , Islets of Langerhans/metabolism , Insulin-Secreting Cells/metabolism , Interferon-gamma/metabolism , Cytokines/metabolism
9.
J Clin Endocrinol Metab ; 106(9): e3364-e3368, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34406396

ABSTRACT

CONTEXT: Diabetes is reported as a risk factor for severe coronavirus disease 2019 (COVID-19), but whether this risk is similar in all categories of age remains unclear. OBJECTIVE: To investigate the risk of severe COVID-19 outcomes in hospitalized patients with and without diabetes according to age categories. DESIGN SETTING AND PARTICIPANTS: We conducted a retrospective observational cohort study of 6314 consecutive patients hospitalized for COVID-19 between February and 30 June 2020 in the Paris metropolitan area, France; follow-up was recorded until 30 September 2020. MAIN OUTCOME MEASURE(S): The main outcome was a composite outcome of mortality and orotracheal intubation in subjects with diabetes compared with subjects without diabetes, after adjustment for confounding variables and according to age categories. RESULTS: Diabetes was recorded in 39% of subjects. Main outcome was higher in patients with diabetes, independently of confounding variables (hazard ratio [HR] 1.13 [1.03-1.24]) and increased with age in individuals without diabetes, from 23% for those <50 to 35% for those >80 years but reached a plateau after 70 years in those with diabetes. In direct comparison between patients with and without diabetes, diabetes-associated risk was inversely proportional to age, highest in <50 years and similar after 70 years. Similarly, mortality was higher in patients with diabetes (26%) than in those without diabetes (22%, P < 0.001), but adjusted HR for diabetes was significant only in patients younger than age 50 years (HR 1.81 [1.14-2.87]). CONCLUSIONS: Diabetes should be considered as an independent risk factor for the severity of COVID-19 in young adults more so than in older adults, especially for individuals younger than 70 years.


Subject(s)
COVID-19/epidemiology , Diabetes Mellitus/physiopathology , Hospital Mortality/trends , Hospitalization/statistics & numerical data , SARS-CoV-2/isolation & purification , Severity of Illness Index , Aged , Aged, 80 and over , COVID-19/virology , Female , France/epidemiology , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Risk Factors
11.
Endocr Relat Cancer ; 28(8): 563-571, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34061769

ABSTRACT

Duodenopancreatic neuroendocrine tumors (DPNETs) aggressiveness is heterogeneous. Tumor grade and extension are commonly used for prognostic determination. Yet, grade classes are empirically defined, with regular updates changing the definition of classes. Genomic screening may provide more objective classes and reflect tumor biology. The aim of this study was to provide a transcriptome classification of DPNETs. We included 66 DPNETs, covering the entire clinical spectrum of the disease in terms of secretion, grade, and stage. Three distinct molecular groups were identified, associated with distinct outcomes (log-rank P < 0.01): (i) better-outcome DPNETs with pancreatic beta-cell signature. This group was mainly composed of well-differentiated, grade 1 insulinomas; (ii) poor-outcome DPNETs with pancreatic alpha-cell and hepatic signature. This group included all neuroendocrine carcinomas and grade 3 DPNETs, but also some grade 1 and grade 2 DPNETs and (iii) intermediate-outcome DPNETs with pancreatic exocrine and progenitor signature. This group included grade 1 and grade 2 DPNETs, with some insulinomas. Fibrinogen gene FGA expression was one of the topmost expressed liver genes. FGA expression was associated with disease-free survival (HR = 1.13, P = 0.005) and could be validated on two independent cohorts. This original pathophysiologic insight provides new prognostic classification perspectives.


Subject(s)
Insulinoma , Multiple Endocrine Neoplasia Type 1 , Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Multiple Endocrine Neoplasia Type 1/pathology , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/pathology , Prognosis , Transcriptome
12.
Obes Surg ; 31(3): 1046-1054, 2021 03.
Article in English | MEDLINE | ID: mdl-33146869

ABSTRACT

INTRODUCTION/ PURPOSE: Sleeve gastrectomy (SG), the most frequently performed bariatric procedure, induces marked weight-loss, but with high inter-individual variability. Since type 2 diabetes (T2D) negatively impacts weight-loss outcomes after Roux-en-Y gastric bypass (RYGB), we herein aimed to evaluate whether and how T2D status may influence weight-loss and body composition changes in individuals with or without T2D after SG. MATERIAL AND METHODS: We retrospectively included individuals with obesity operated from SG and prospectively followed at our center: 373 patients including 152 with T2D (40%). All subjects' clinical characteristics were collected before and during 4 years of follow-up post-SG. Linear mixed models were applied to analyze weight-loss trajectories post-surgery. RESULTS: Compared to individuals with obesity but no T2D, those with T2D before SG displayed lower weight-loss at 1 year (21 vs. 27% from baseline, p < 10-3). This difference was accentuated in patients with poorer glucose control (HbA1c > 7%) at baseline. Furthermore, patients with T2D underwent less favorable body composition changes at 1-year post-SG compared to individuals without T2D (% fat mass reduction: 28 vs. 37%, p < 10-3 respectively). CONCLUSION: When undergoing SG, subjects with obesity and T2D who have poor pre-operative glycemic control display reduced weight-loss and less improvement in body composition compared to patients with obesity but without T2D. This result suggests that glycemic control prior to surgery is important to take into account for the outcome of bariatric surgery.


Subject(s)
Diabetes Mellitus, Type 2 , Gastric Bypass , Obesity, Morbid , Body Composition , Diabetes Mellitus, Type 2/surgery , Gastrectomy , Humans , Obesity, Morbid/surgery , Retrospective Studies , Weight Loss
13.
EMBO Mol Med ; 12(10): e13038, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32816392

ABSTRACT

Early in the COVID-19 pandemic, type 2 diabetes (T2D) was marked as a risk factor for severe disease and mortality. Inflammation is central to the aetiology of both conditions where variations in immune responses can mitigate or aggravate disease course. Identifying at-risk groups based on immunoinflammatory signatures is valuable in directing personalised care and developing potential targets for precision therapy. This observational study characterised immunophenotypic variation associated with COVID-19 severity in T2D. Broad-spectrum immunophenotyping quantified 15 leucocyte populations in peripheral circulation from a cohort of 45 hospitalised COVID-19 patients with and without T2D. Lymphocytopenia and specific loss of cytotoxic CD8+ lymphocytes were associated with severe COVID-19 and requirement for intensive care in both non-diabetic and T2D patients. A morphological anomaly of increased monocyte size and monocytopenia restricted to classical CD14Hi CD16- monocytes was specifically associated with severe COVID-19 in patients with T2D requiring intensive care. Increased expression of inflammatory markers reminiscent of the type 1 interferon pathway (IL6, IL8, CCL2, INFB1) underlaid the immunophenotype associated with T2D. These immunophenotypic and hyperinflammatory changes may contribute to increased voracity of COVID-19 in T2D. These findings allow precise identification of T2D patients with severe COVID-19 as well as provide evidence that the type 1 interferon pathway may be an actionable therapeutic target for future studies.


Subject(s)
COVID-19/pathology , Diabetes Mellitus, Type 2/pathology , Monocytes/physiology , Aged , COVID-19/complications , COVID-19/virology , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Diabetes Mellitus, Type 2/complications , Female , Humans , Immunophenotyping , Inflammation/etiology , Interleukin-6/genetics , Interleukin-6/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Lipopolysaccharide Receptors/metabolism , Lymphopenia/diagnosis , Male , Middle Aged , Monocytes/cytology , Monocytes/pathology , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index
14.
Mol Metab ; 41: 101041, 2020 11.
Article in English | MEDLINE | ID: mdl-32603690

ABSTRACT

BACKGROUND: Diabetes is one of the greatest public health challenges worldwide, and we still lack complementary approaches to significantly enhance the efficacy of preventive and therapeutic approaches. Genetic and environmental factors are the culprits involved in diabetes risk. Evidence from the last decade has highlighted that deregulation in the immune and inflammatory responses increase susceptibility to type 1 and type 2 diabetes. Spatiotemporal patterns of gene expression involved in immune cell polarisation depend on genomic enhancer elements in response to inflammatory and metabolic cues. Several studies have reported that most regulatory genetic variants are located in the non-protein coding regions of the genome and particularly in enhancer regions. The progress of high-throughput technologies has permitted the characterisation of enhancer chromatin properties. These advances support the concept that genetic alteration of enhancers may influence the immune and inflammatory responses in relation to diabetes. SCOPE OF REVIEW: Results from genome-wide association studies (GWAS) combined with functional and integrative analyses have elucidated the impacts of some diabetes risk-associated variants that are involved in the regulation of the immune system. Additionally, genetic variant mapping to enhancer regions may alter enhancer status, which in turn leads to aberrant expression of inflammatory genes associated with diabetes susceptibility. The focus of this review was to provide an overview of the current indications that inflammatory processes are regulated at the genetic and epigenomic levels in diabetes, along with perspectives on future research avenues that may improve understanding of the disease. MAJOR CONCLUSIONS: In this review, we provide genetic evidence in support of a deregulated immune response as a risk factor in diabetes. We also argue about the importance of enhancer regions in the regulation of immune cell polarisation and how the recent advances using genome-wide methods for enhancer identification have enabled the determination of the impact of enhancer genetic variation on diabetes onset and phenotype. This could eventually lead to better management plans and improved treatment responses in human diabetes.


Subject(s)
Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Inflammation/genetics , Chromatin/metabolism , Diabetes Mellitus/immunology , Enhancer Elements, Genetic , Epigenesis, Genetic , Epigenomics/methods , Gene Expression , Genome-Wide Association Study/methods , Genomics/methods , Genotype , Humans , Inflammation/immunology , Inflammation/metabolism , Phenotype , Polymorphism, Single Nucleotide
15.
Differentiation ; 113: 1-9, 2020.
Article in English | MEDLINE | ID: mdl-32120156

ABSTRACT

The functional maturation of human pancreatic ß-cells remains poorly understood. EndoC-ßH2 is a human ß-cell line with a reversible immortalized phenotype. Removal of the two oncogenes, SV40LT and hTERT introduced for its propagation, stops proliferation, triggers cell size increase and senescence, promotes mitochondrial activity and amplifies several ß-cell traits and functions. Overall, these events recapitulate several aspects of functional ß-cell maturation. We report here that selective depletion of SV40LT, but not of hTERT, is sufficient to revert EndoC-ßH2 immortalization. SV40LT inhibits the activity of the RB family members and of P53. In EndoC-ßH2 cells, the knock-down of RB itself, and, to a lesser extent, of its relative P130, precludes most events triggered by SV40LT depletion. In contrast, the knock-down of P53 does not prevent reversion of immortalization. Thus, an increase in RB and P130 activity, but not in P53 activity, is required for functional maturation of EndoC-ßH2 cells upon SV40LT-depletion. In addition, RB and/or P130 depletion in SV40LT-expressing EndoC-ßH2 cells decreases cell size, stimulates proliferation, and decreases the expression of key ß-cell genes. Thus, despite SV40LT expression, EndoC-ßH2 cells have a residual RB activity, which when suppressed reverts them to a more immature phenotype. These results show that the expression and activity levels of RB family members, especially RB itself, regulate the maturation state of EndoC-ßH2 cells.


Subject(s)
Genes, Retinoblastoma , Insulin-Secreting Cells/metabolism , Retinoblastoma Protein/physiology , Antigens, Polyomavirus Transforming/genetics , Cell Cycle , Cell Line , Cell Proliferation , Cellular Senescence , Gene Knockdown Techniques , Humans , Insulin/biosynthesis , Insulin/genetics , Insulin-Secreting Cells/cytology , Multigene Family , RNA, Small Interfering , Retinoblastoma-Like Protein p130/physiology , Telomerase/genetics , Transcription, Genetic , Tumor Suppressor Protein p53/physiology
16.
Cancer Cell ; 37(1): 123-134.e5, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31883967

ABSTRACT

Pituitary neuroendocrine tumors (PitNETs) are common, with five main histological subtypes: lactotroph, somatotroph, and thyrotroph (POU1F1/PIT1 lineage); corticotroph (TBX19/TPIT lineage); and gonadotroph (NR5A1/SF1 lineage). We report a comprehensive pangenomic classification of PitNETs. PitNETs from POU1F1/PIT1 lineage showed an epigenetic signature of diffuse DNA hypomethylation, with transposable elements expression and chromosomal instability (except for GNAS-mutated somatotrophs). In TPIT lineage, corticotrophs were divided into three classes: the USP8-mutated with overt secretion, the USP8-wild-type with increased invasiveness and increased epithelial-mesenchymal transition, and the large silent tumors with gonadotroph transdifferentiation. Unexpected expression of gonadotroph markers was also found in GNAS-wild-type somatotrophs (SF1 expression), challenging the current definition of SF1/gonadotroph lineage. This classification improves our understanding and affects the clinical stratification of patients with PitNETs.


Subject(s)
Neuroendocrine Tumors/diagnosis , Neuroendocrine Tumors/genetics , Pituitary Neoplasms/diagnosis , Pituitary Neoplasms/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cell Lineage , Chromosome Aberrations , DNA Methylation , Endopeptidases/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Epigenesis, Genetic , Epigenome , Exome , Female , Humans , Male , Middle Aged , Mutation , Neoplasm Invasiveness , Neuroendocrine Tumors/pathology , Pituitary Gland/metabolism , Pituitary Neoplasms/pathology , Prognosis , Transcriptome , Ubiquitin Thiolesterase/metabolism , Young Adult
17.
Cell Metab ; 28(6): 946-960.e6, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30078552

ABSTRACT

Although CD8+ T-cell-mediated autoimmune ß cell destruction occurs in type 1 diabetes (T1D), the target epitopes processed and presented by ß cells are unknown. To identify them, we combined peptidomics and transcriptomics strategies. Inflammatory cytokines increased peptide presentation in vitro, paralleling upregulation of human leukocyte antigen (HLA) class I expression. Peptide sources featured several insulin granule proteins and all known ß cell antigens, barring islet-specific glucose-6-phosphatase catalytic subunit-related protein. Preproinsulin yielded HLA-A2-restricted epitopes previously described. Secretogranin V and its mRNA splice isoform SCG5-009, proconvertase-2, urocortin-3, the insulin gene enhancer protein ISL-1, and an islet amyloid polypeptide transpeptidation product emerged as antigens processed into HLA-A2-restricted epitopes, which, as those already described, were recognized by circulating naive CD8+ T cells in T1D and healthy donors and by pancreas-infiltrating cells in T1D donors. This peptidome opens new avenues to understand antigen processing by ß cells and for the development of T cell biomarkers and tolerogenic vaccination strategies.


Subject(s)
Antigen Presentation , CD8-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/immunology , Epitopes, T-Lymphocyte/immunology , Transcriptome/immunology , Animals , Biomarkers/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Case-Control Studies , Cell Line , Corticotropin-Releasing Hormone/metabolism , Cytokines/metabolism , HLA Antigens/metabolism , Humans , Insulin/metabolism , Islet Amyloid Polypeptide/metabolism , Mice , Neuroendocrine Secretory Protein 7B2/metabolism , Proprotein Convertase 2/metabolism , Protein Precursors/metabolism , Proteomics/methods , Urocortins/metabolism
18.
Nat Immunol ; 19(9): 1035, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29880894

ABSTRACT

In the version of this Article originally published, the asterisks indicating statistical significance were missing from Supplementary Figure 6; the file with the correct figure is now available.

19.
Mol Metab ; 10: 74-86, 2018 04.
Article in English | MEDLINE | ID: mdl-29472102

ABSTRACT

OBJECTIVE: Dedifferentiation could explain reduced functional pancreatic ß-cell mass in type 2 diabetes (T2D). METHODS: Here we model human ß-cell dedifferentiation using growth factor stimulation in the human ß-cell line, EndoC-ßH1, and human pancreatic islets. RESULTS: Fibroblast growth factor 2 (FGF2) treatment reduced expression of ß-cell markers, (INS, MAFB, SLC2A2, SLC30A8, and GCK) and activated ectopic expression of MYC, HES1, SOX9, and NEUROG3. FGF2-induced dedifferentiation was time- and dose-dependent and reversible upon wash-out. Furthermore, FGF2 treatment induced expression of TNFRSF11B, a decoy receptor for RANKL and protected ß-cells against RANKL signaling. Finally, analyses of transcriptomic data revealed increased FGF2 expression in ductal, endothelial, and stellate cells in pancreas from T2D patients, whereas FGFR1, SOX,9 and HES1 expression increased in islets from T2D patients. CONCLUSIONS: We thus developed an FGF2-induced model of human ß-cell dedifferentiation, identified new markers of dedifferentiation, and found evidence for increased pancreatic FGF2, FGFR1, and ß-cell dedifferentiation in T2D.


Subject(s)
Cell Dedifferentiation , Diabetes Mellitus, Type 2/metabolism , Insulin-Secreting Cells/cytology , Cells, Cultured , Diabetes Mellitus, Type 2/pathology , Fibroblast Growth Factor 2/pharmacology , Humans , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Osteoprotegerin/genetics , Osteoprotegerin/metabolism , RANK Ligand/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Transcription Factor HES-1/genetics , Transcription Factor HES-1/metabolism
20.
JCI Insight ; 3(3)2018 02 08.
Article in English | MEDLINE | ID: mdl-29415896

ABSTRACT

Type 1 diabetes (T1D) is a chronic disease characterized by an autoimmune-mediated destruction of insulin-producing pancreatic ß cells. Environmental factors such as viruses play an important role in the onset of T1D and interact with predisposing genes. Recent data suggest that viral infection of human islets leads to a decrease in insulin production rather than ß cell death, suggesting loss of ß cell identity. We undertook this study to examine whether viral infection could induce human ß cell dedifferentiation. Using the functional human ß cell line EndoC-ßH1, we demonstrate that polyinosinic-polycytidylic acid (PolyI:C), a synthetic double-stranded RNA that mimics a byproduct of viral replication, induces a decrease in ß cell-specific gene expression. In parallel with this loss, the expression of progenitor-like genes such as SOX9 was activated following PolyI:C treatment or enteroviral infection. SOX9 was induced by the NF-κB pathway and also in a paracrine non-cell-autonomous fashion through the secretion of IFN-α. Lastly, we identified SOX9 targets in human ß cells as potentially new markers of dedifferentiation in T1D. These findings reveal that inflammatory signaling has clear implications in human ß cell dedifferentiation.


Subject(s)
Cell Dedifferentiation/immunology , Diabetes Mellitus, Type 1/immunology , Enterovirus Infections/immunology , Insulin-Secreting Cells/physiology , Cell Dedifferentiation/drug effects , Cell Line , Diabetes Mellitus, Type 1/virology , Enterovirus/immunology , Enterovirus Infections/virology , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Interferon Inducers/pharmacology , Interferon-alpha/immunology , Interferon-alpha/metabolism , NF-kappa B/metabolism , Poly I-C/pharmacology , Primary Cell Culture , SOX9 Transcription Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...