Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Beilstein J Org Chem ; 18: 1524-1531, 2022.
Article in English | MEDLINE | ID: mdl-36447520

ABSTRACT

Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract infections in infants. Currently, ribavirin, a nucleoside analog containing a 1,2,4-triazole-3-carboxamide moiety, is a first-line drug for its treatment, however, its clinical use has been limited due to its side effects. Here, we designed two new nitroaryl-1,2,3-triazole triterpene derivatives as novel anti-RSV drugs. Their anti-RSV and cytotoxic activity were evaluated in vitro, RSV protein F gene effects by RT-PCR and molecular modeling with inosine monophosphate dehydrogenase (IMPDH) were performed. Compound 8 was the best performing compound, with an EC50 value of 0.053 µM, a TI of 11160.37 and it inhibited hRSV protein F gene expression by approximately 65%. Molecular docking showed a top-ranked solution located in the same region occupied by crystallographic ligands in their complex with IMPDH. The results obtained in this study suggest that compound 8 might be a new anti-RSV candidate.

2.
J Med Microbiol ; 70(3)2021 Mar.
Article in English | MEDLINE | ID: mdl-33502306

ABSTRACT

Introduction. Onychomycosis infections currently show a significant increase, affecting about 10 % of the world population. Trichophyton rubrum is the main agent responsible for about 80 % of the reported infections. The clinical cure for onychomycosis is extremely difficult and effective new antifungal therapy is needed.Hypothesis/Gap Statement. Ex vivo onychomycosis models using porcine hooves can be an excellent alternative for evaluating the efficacy of new anti-dermatophytic agents in a nail lacquer.Aim. Evaluation of the effectiveness of a nail lacquer containing a quinoline derivative on an ex vivo onychomycosis model using porcine hooves, as well as the proposal of a plausible antifungal mechanism of this derivative against dermatophytic strains.Methodology. The action mechanism of a quinoline derivative was evaluated through the sorbitol protection assay, exogenous ergosterol binding, and the determination of the dose-response curves by time-kill assay. Scanning electron microscopy evaluated the effect of the derivative in the fungal cells. The efficacy of a quinoline-derivative nail lacquer on an ex vivo onychomycosis model using porcine hooves was evaluated as well.Results. The quinoline derivative showed a time-dependent fungicidal effect, demonstrating reduction and damage in the morphology of dermatophytic hyphae. In addition, the ex vivo onychomycosis model was effective in the establishment of infection by T. rubrum.Conclusion. Treatment with the quinoline-derivative lacquer showed a significant inhibitory effect on T. rubrum strain in this infection model. Finally, the compound presents high potential for application in a formulation such as nail lacquer as a possible treatment for dermatophytic onychomycosis.


Subject(s)
Antifungal Agents/pharmacology , Arthrodermataceae/drug effects , Foot Dermatoses/microbiology , Hoof and Claw/microbiology , Onychomycosis/drug therapy , Quinolines/pharmacology , Administration, Topical , Animals , Disease Models, Animal , Foot Dermatoses/drug therapy , Humans , Lacquer , Onychomycosis/microbiology , Swine
3.
Braz J Microbiol ; 51(4): 1691-1701, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32737869

ABSTRACT

Fungal infections have emerged as a current serious global public health problem. The main problem involving these infections is the expansion of multidrug resistance. Therefore, the prospection of new compounds with efficacy antifungal becomes necessary. Thus, this study evaluated the antifungal profile and toxicological parameters of quinolines derivatives against Candida spp. and dermatophyte strains. As a result, a selective anti-dermatophytic action was demonstrated by compound 5 (geometric means (GM = 19.14 µg ml-1)). However, compounds 2 (GM = 50 µg ml-1) and 3 (GM = 47.19 µg ml-1) have presented only anti-Candida action. Compounds 3 and 5 did not present cytotoxic action. Compound 5 did not produce dermal and mucosal toxicity. In addition, this compound showed the absence of genotoxic potential, suggesting safety for topical and systemic use. Quinolines demonstrated a potent anti-dermatophytic and anti-yeast action. Moreover, compound 5 presented an excellent toxicological profile, acting as a strong candidate for the development of a new effective and safe compound against dermatophytosis of difficult treatment.


Subject(s)
Antifungal Agents/pharmacology , Arthrodermataceae/drug effects , Candida/drug effects , Quinolines/pharmacology , Animals , Antifungal Agents/chemistry , Cell Survival/drug effects , Chlorocebus aethiops , Microbial Sensitivity Tests , Quinolines/chemistry , Vero Cells
4.
Chem Biol Interact ; 287: 70-77, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29604267

ABSTRACT

Malaria is one of the most significant infectious diseases that affect poor populations in tropical areas throughout the world. Plants have been shown to be a good source for the development of new antimalarial chemotherapeutic agents, as shown for the discovery of quinine and artemisinin derivatives. Our research group has been working with semisynthetic triterpene derivatives that show potential antimalarial activity toward different strains of Plasmodium falciparum by specifically modulating calcium pathways in the parasite. Promising results were obtained for nanomolar concentrations of the semisynthetic betulinic acid derivative LAFIS13 against the P. falciparum 3D7 strain in vitro, with a selectivity index of 18 compared to a mammalian cell line. Continuing these studies, we present here in vitro and in vivo toxicological evaluations of this compound, followed by docking studies with PfATP6, a sarco/endoplasmic reticulum Ca+2-ATPase (SERCA) protein. LAFIS13 showed an LD50 between 300 and 50 mg/kg, and the acute administration of 50 mg/kg (i.p.) had no negative effects on hematological, biochemical and histopathological parameters. Based on the results of the in vitro assays, LAFIS13 not exerted significant effects on coagulation parameters of human peripheral blood, but a hemolytic activity was verified at higher concentrations. According to the molecular docking study, the PfATP6 protein may be a target for LAFIS13, which corroborates its previously reported modulatory effects on calcium homeostasis in the parasite. Notably, LAFIS13 showed a higher selectivity for the mammalian SERCA protein than for PfATP6, thus impairing the selectivity between parasite and host. In summary, the direct interaction with calcium pumps and the hemolytic potential of the compound proved to be plausible mechanism of LAFIS13 toxicity.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Triterpenes/chemistry , Triterpenes/pharmacology , Animals , Antimalarials/chemistry , Antimalarials/toxicity , Binding Sites , Biomarkers/blood , Blood Coagulation/drug effects , Brain/drug effects , Brain/pathology , Calcium-Transporting ATPases/chemistry , Calcium-Transporting ATPases/metabolism , Female , Humans , Kidney/drug effects , Kidney/pathology , Lung/drug effects , Lung/pathology , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Pentacyclic Triterpenes , Plasmodium falciparum/metabolism , Protein Binding/drug effects , Protein Structure, Tertiary , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Thermodynamics , Triterpenes/toxicity , Betulinic Acid
5.
Braz. j. pharm. sci ; 48(2): 273-280, Apr.-June 2012. tab
Article in English | LILACS | ID: lil-643020

ABSTRACT

Medicinal plants (e.g. Discaria americana) have been used by populations for centuries. However, popular use is not enough to validate these plants as safe and effective medicinal products. The present study sought to evaluate the acute and subacute toxicity as well as the anxiolytic and antinociceptive effects of D. americana root bark and aerial parts extracts in mice. In acute toxicity studies, mice were treated with single intraperitoneal doses of the aforementioned extracts. Subacute toxicity studies were performed by oral administration of the extracts over 14 days. Anxiolytic studies consisted of the elevated plus maze method, and antinociceptive studies were based on the hot plate test. The LD50 value for D. americana aerial parts extract was established at >500 mg/kg, and for the root bark extract, 400 mg/kg. D. americana aerial parts extract produced anxiolytic (250 mg/kg) and antinociceptive effects (125, 200 and 250 mg/kg). Conversely, D. americana root bark extract showed neither anxiolytic nor antinociceptive effects in mice.


As plantas medicinais (i. e. Discaria americana) têm sido utilizadas pela população por séculos, entretanto, o conhecimento popular não é suficiente para validá-las como medicamentos seguros e/ou efetivos. Assim, o presente estudo teve por objetivo avaliar a toxicidade aguda e subaguda, bem como o efeito ansiolítico e antinociceptivo dos extratos da casca da raiz e das partes aéreas da D. americana em camundongos. A toxicidade aguda foi avaliada pela administração dos extratos, via intraperitoneal. Para o estudo da toxicidade subaguda os animais foram tratados oralmente com os extratos por 14 dias. O efeito ansiolítico dos extratos foi determinado através do modelo do labirinto em cruz elevado e o efeito antinociceptivo, mediante o teste da placa quente. O valor da DL50 para o extrato das partes aéreas da D. americana foi definido como > 500 mg/kg, enquanto que para o extrato da casca da raiz foi estabelecido em 400 mg/kg. O extrato das partes aéreas da D. americana apresentou atividade ansiolítica (250 mg/kg) e antinociceptiva (125, 200 e 250 mg/kg). O extrato da casca da raiz da D. americana não apresentou efeito ansiolítico nem antinociceptivo.


Subject(s)
Mice , Pharmacology/methods , Toxicology/methods , Rhamnaceae/classification , Rhamnaceae/metabolism , Plants, Medicinal/toxicity , Plant Roots/classification , /classification
SELECTION OF CITATIONS
SEARCH DETAIL
...