Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 12(1): 2798, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990611

ABSTRACT

Radiation dosimeters displaying conspicuous response of irradiance are highly desirable, owing to the growing demand of monitoring high-energy radiation and environmental exposure. Herein, we present a case of dosimetry based on a discrete nanocluster, [Th6(OH)4(O)4(H2O)6](TPC)8(HCOO)4∙4DMF∙H2O (Th-SINAP-100), by judiciously incorporating heavy Th6 polynuclear centers as radiation attenuator and organic linkers as photo-responsive sensor. Interestingly, dual-module photochromic transitions upon multiple external stimuli including UV, ß-ray, and γ-ray are integrated into this single material. The striking color change, and more significantly, the visible color transition of luminescence in response to accumulating radiation dose allow an on-site quantitative platform for naked-eye detection of ionization radiations over a broad range (1-80 kGy). Single crystal X-ray diffraction and density functional theory calculations reveal that the dual-module photochromism can be attributed to the π(TPC) → π*(TPC) intermolecular charge transfer driven by enhanced π-π stacking interaction between the adjacent TPC moieties upon irradiation.

2.
Inorg Chem ; 59(18): 13398-13406, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32806019

ABSTRACT

The synthesis of a large family of heterobimetallic lanthanide copper sulfates was realized via stoichiometric hydrothermal reactions among Ln2O3, CuO, and H2SO4, giving rise to four distinct phases, namely Ln2Cu(SO4)2(OH)4 (Ln = Sm-Ho) (LnCuSO4-1), Ln4Cu(SO4)2(OH)10 (Ln = Tm-Lu) (LnCuSO4-2), LnCu(SO4)(OH)3 (Ln = Nd-Gd, except Pm) (LnCuSO4-3), and LnCu(SO4)(OH)3 (Ln = Dy-Lu) (LnCuSO4-4), with completely different topologies. The passage from LnCuSO4-1 and LnCuSO4-3 to LnCuSO4-2 and LnCuSO4-4 across the 4f series, respectively, can be ascribed to the effect of lanthanide contraction, which progressively induces shrinking of the Ln-O distance, reduction in the Ln coordination number, and eventually structural transitions. The incorporation of identical 3d-4f metal ions into different spin-lattices, in conjunction with substitution of diverse Ln3+ cations within the same spin-lattice, gives rise to tunable magnetic properties varying from ferromagnetic ordering in GdCuSO4-3 and HoCuSO4-4 to antiferromagnetic ordering in YbCuSO4-4, and to paramagnetic correlations found in GdCuSO4-1 and YbCuSO4-2.

3.
Dalton Trans ; 48(34): 12808-12811, 2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31348473

ABSTRACT

A unique selective crystallization strategy based on an iodate-sulfate mixed-anion system has been developed for lanthanide separation. Periodic divergences in crystal formation energy enable simple Nd/Dy, La/Lu, Gd/Tb, La/Dy, and Nd/Lu separations through crystallization of the early lanthanides, giving rise to separation factors up to 123(5), 100(2), 2.4(2), 137(9), and 85(6), respectively.

4.
Dalton Trans ; 48(15): 4823-4829, 2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30724286

ABSTRACT

Expanding the family of f-element bearing molybdate iodates via hydrothermal reactions has yielded ten new rare-earth molybdate iodates with two distinct phases, Ln(MoO2)(IO3)4(OH) (LnMoIO-1, Ln = Ce and Pr) and Ln(Mo2O7)(IO3)(H2O)2 (LnMoIO-2, Ln = Gd-Yb, and Y), as well as the first thorium molybdate iodate, ThF(MO4)(IO3) (ThFMoIO). All three structures exhibit three dimensional frameworks and are exclusively built from lanthanide/actinide polyhedra bridged by molybdates and iodates. Furthermore, the coordination versatility of molybdates (octahedral, square pyramidal, and tetrahedral geometries) results in a diversity of structures. The effect of the lanthanide contraction on the compositions and structures is clearly observed, showing the increase in hydration from the early to late lanthanide analogues and the decrease in unit cell dimensions and the average Ln-O bonding distances across the same structure type. Single crystal X-ray diffraction studies reveal that LnMoIO-1 (Ln = Ce and Pr) crystalize in a noncentrosymmetric space group P21 and the second-harmonic generation (SHG) measurement shows a response of 5 × KDP for PrMoIO-1. In addition, CeMoIO-1 crystallizes as orange coloured tablets which are semiconducting in nature with a band gap of 2.41 eV.

5.
Nat Commun ; 6: 6827, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25880116

ABSTRACT

A break in periodicity occurs in the actinide series between plutonium and americium as the result of the localization of 5f electrons. The subsequent chemistry of later actinides is thought to closely parallel lanthanides in that bonding is expected to be ionic and complexation should not substantially alter the electronic structure of the metal ions. Here we demonstrate that ligation of californium(III) by a pyridine derivative results in significant deviations in the properties of the resultant complex with respect to that predicted for the free ion. We expand on this by characterizing the americium and curium analogues for comparison, and show that these pronounced effects result from a second transition in periodicity in the actinide series that occurs, in part, because of the stabilization of the divalent oxidation state. The metastability of californium(II) is responsible for many of the unusual properties of californium including the green photoluminescence.

6.
Inorg Chem ; 53(17): 9058-64, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25144682

ABSTRACT

Six new lanthanide tellurium vanadates with the general formula LnV3Te3O15(OH)3·nH2O (LnVTeO) (Ln = Ce, Pr, Nd, Sm, Eu, and Gd; n = 2 for Ce and Pr; n = 1 for Nd, Sm, Eu, and Gd) have been prepared hydrothermally via the reactions of lanthanide nitrates, TeO2, and V2O5 at 230 °C. LnVTeO adopts a three-dimensional (3D) channel structure with a space group of P63/mmc. Surprisingly, two types of oxoanions: Te(IV)O3(2-) trigonal pyramids and Te(VI)O6(6-) octahedra, coexist in these compounds. Solid-state UV-vis-NIR absorption spectra for LnVTeO show approximate band gaps on the order of 1.9 eV, suggesting the wide band gap semiconducting nature of these materials. No magnetic phase transition was observed in any of the analogues, but a clear increase in the strength of short-range antiferromagnetic correlations was found with the shortening of distances between magnetically coupled Ln(3+) ions in LnVTeO.

7.
Inorg Chem ; 53(16): 8555-64, 2014 Aug 18.
Article in English | MEDLINE | ID: mdl-25100440

ABSTRACT

Twenty-two new lanthanide tellurite sulfates with five distinct structures, Ln2(Te2O5)(SO4)2 (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb; LnTeSO-1), Ho3(TeO3)2(SO4)2(OH)(H2O) (LnTeSO-2), Ln2TeO3(SO4)2(H2O)2 (Ln = Dy, Ho, Er; LnTeSO-3), Ln2(Te2O5)(SO4)2 (Ln = Er, Tm, Yb, Lu; LnTeSO-4), and Ln2(Te4O10)(SO4) (Ln = Gd, Dy, Ho, Er, Tm, Yb; LnTeSO-5), have been prepared and characterized. The topologies of LnTeSO-1, LnTeSO-2, LnTeSO-3, LnTeSO-4, and LnTeSO-5 are substantially different with respect to the connectivity between Ln polyhedra and the coordination environments of the lanthanide ions. For the first four topologies, the dimensionality changes from layered (LnTeSO-1) to chains (LnTeSO-2) to tetramers (LnTeSO-3) and finally to a monomer (LnTeSO-4). The coordination numbers of lanthanides decrease from nine (LnTeSO-1) to eight (LnTeSO-2 and LnTeSO-3) to seven and six (LnTeSO-4). We attribute the transitions to a decrease in the ionic radii of the 4f ions. Magnetic susceptibility measurements reveal no evidence for long-range magnetic ordering in these materials. However, diverse short-range magnetic correlations were observed within LnTeSO-1.

8.
Inorg Chem ; 53(14): 7154-9, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24964359

ABSTRACT

Two new neptunium selenites with different oxidation states of the metal centers, Np(IV)(SeO3)2 and Np(VI)O2(SeO3), have been synthesized under mild hydrothermal conditions at 200 °C from the reactions of NpO2 and SeO2. Np(SeO3)2 crystallizes as brown prisms (space group P21/n, a = 7.0089(5) Å, b = 10.5827(8) Å, c = 7.3316(5) Å, ß = 106.953(1)°); whereas NpO2(SeO3) crystals are garnet-colored with an acicular habit (space group P21/m, a = 4.2501(3) Å, b = 9.2223(7) Å, c = 5.3840(4) Å, ß = 90.043(2)°). Single-crystal X-ray diffraction studies reveal that the structure of Np(SeO3)2 features a three-dimensional (3D) framework consisting of edge-sharing NpO8 units that form chains that are linked via SeO3 units to create a 3D framework. NpO2(SeO3) possesses a lamellar structure in which each layer is composed of NpO8 hexagonal bipyramids bridged via SeO3(2-) anions. Bond-valence sum calculations and UV-vis-NIR absorption spectra support the assignment of tetravalent and hexavalent states of neptunium in Np(SeO3)2 and NpO2(SeO3), respectively. Magnetic susceptibility data for Np(SeO3)2 deviates substantially from typical Curie-Weiss behavior, which can be explained by large temperature-independent paramagnetic (TIP) effects. The Np(IV) selenite shows weak ferromagnetic ordering at 3.1(1) K with no detectable hysteresis, suggesting soft ferromagnetic behavior.

9.
Inorg Chem ; 53(7): 3540-5, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24628651

ABSTRACT

The reaction of A2S3/U/P2S5/S at 500 °C affords the quinary U(IV) thiophosphates A6U3Sb2P8S32 (A = Rb, Cs). These compounds contain {U3(PS4)2[Sb(PS4)3]2}(6-) layers separated by alkali metal cations. The layers are composed of trimeric uranium units connected to each other by the thiophosphato-antimonite anion, [Sb(PS4)3](6-). This unit contains a central Sb(III) cation bound by three [PS4](3-) anions, creating a trigonal pyramidal environment around Sb(III). Each uranium cation is surrounded by eight sulfides in a distorted square antiprism that shares two edges with two other US8 units to form a trimeric [U3S18](24-) cluster. Magnetic susceptibility measurements indicate that the close proximity of the U(IV) within these clusters leads to antiferromagnetic ordering at 53 K. Reflectance spectroscopy indicates that these compounds are semiconductors with a band gap of 1.48 eV.

10.
Inorg Chem ; 52(22): 13278-81, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24180361

ABSTRACT

A 3d-4f heterobimetallic material with mixed anions, Ho2Cu(TeO3)2(SO4)2, has been prepared under hydrothermal conditions. Ho2Cu(TeO3)2(SO4)2 exhibits both thermochromism and the Alexandrite effect. Variable temperature single crystal X-ray diffraction and UV-vis-NIR spectroscopy reveal that changes in the Cu(II) coordination geometry result in negative thermal expansion of axial Cu-O bonds that plays a role in the thermochromic transition of Ho2Cu(TeO3)2(SO4)2. Magnetic studies reveal an effective magnetic moment of 14.97 µB. which has a good agreement with the calculated value of 15.09 µB.

SELECTION OF CITATIONS
SEARCH DETAIL
...